IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32607-3.html
   My bibliography  Save this article

Toward a BT.2020 green emitter through a combined multiple resonance effect and multi-lock strategy

Author

Listed:
  • Junyuan Liu

    (Zhejiang University)

  • Yunhui Zhu

    (Zhejiang Hongwu Technology Co., Ltd.)

  • Taiju Tsuboi

    (Zhejiang University)

  • Chao Deng

    (Zhejiang Hongwu Technology Co., Ltd.)

  • Weiwei Lou

    (Zhejiang Hongwu Technology Co., Ltd.)

  • Dan Wang

    (Zhejiang University)

  • Tiangeng Liu

    (Zhejiang University)

  • Qisheng Zhang

    (Zhejiang University
    Zhejiang University)

Abstract

Color-saturated green-emitting molecules with high Commission Internationale de L’Eclairage (CIE) y values have great potential applications for displays and imaging. Here, we linked the outer phenyl groups in multiple-resonance (MR)-type blue-emitting B (boron)-N (nitrogen) molecules through bonding and spiro-carbon bridges, resulting in rigid green emitters with thermally activated delayed fluorescence. The MR effect and multiple interlocking strategy greatly suppressed the high-frequency vibrations in the molecules, which emit green light with a full-width at half-maximum of 14 nm and a CIE y value of 0.77 in cyclohexane. These were the purest green molecules with quantum efficiency and color purity that were comparable with current best quantum dots. Doping these emitters into a traditional green-emitting phosphorescence organic light-emitting diode (OLED) endowed the device with a Broadcast Service Television 2020 color-gamut, 50% improved external quantum efficiency, and an extremely high luminescence of 5.1 × 105 cd/m2, making it the greenest and brightest OLED ever reported.

Suggested Citation

  • Junyuan Liu & Yunhui Zhu & Taiju Tsuboi & Chao Deng & Weiwei Lou & Dan Wang & Tiangeng Liu & Qisheng Zhang, 2022. "Toward a BT.2020 green emitter through a combined multiple resonance effect and multi-lock strategy," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32607-3
    DOI: 10.1038/s41467-022-32607-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32607-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32607-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hironori Kaji & Hajime Suzuki & Tatsuya Fukushima & Katsuyuki Shizu & Katsuaki Suzuki & Shosei Kubo & Takeshi Komino & Hajime Oiwa & Furitsu Suzuki & Atsushi Wakamiya & Yasujiro Murata & Chihaya Adach, 2015. "Purely organic electroluminescent material realizing 100% conversion from electricity to light," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    2. Seth Coe & Wing-Keung Woo & Moungi Bawendi & Vladimir Bulović, 2002. "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature, Nature, vol. 420(6917), pages 800-803, December.
    3. Anton Pershin & David Hall & Vincent Lemaur & Juan-Carlos Sancho-Garcia & Luca Muccioli & Eli Zysman-Colman & David Beljonne & Yoann Olivier, 2019. "Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules," Nature Communications, Nature, vol. 10(1), pages 1-5, December.
    4. Fan-Fang Kong & Xiao-Jun Tian & Yang Zhang & Yun-Jie Yu & Shi-Hao Jing & Yao Zhang & Guang-Jun Tian & Yi Luo & Jin-Long Yang & Zhen-Chao Dong & J. G. Hou, 2021. "Probing intramolecular vibronic coupling through vibronic-state imaging," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianyu Zhang & Yujie Tu & Hanchen Shen & Jacky W. Y. Lam & Jianwei Sun & Haoke Zhang & Ben Zhong Tang, 2023. "Regulating the proximity effect of heterocycle-containing AIEgens," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Alexander J. Gillett & Claire Tonnelé & Giacomo Londi & Gaetano Ricci & Manon Catherin & Darcy M. L. Unson & David Casanova & Frédéric Castet & Yoann Olivier & Weimin M. Chen & Elena Zaborova & Emrys , 2021. "Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Junki Ochi & Yuki Yamasaki & Kojiro Tanaka & Yasuhiro Kondo & Kohei Isayama & Susumu Oda & Masakazu Kondo & Takuji Hatakeyama, 2024. "Highly efficient multi-resonance thermally activated delayed fluorescence material toward a BT.2020 deep-blue emitter," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Ying-Chun Cheng & Xun Tang & Kai Wang & Xin Xiong & Xiao-Chun Fan & Shulin Luo & Rajat Walia & Yue Xie & Tao Zhang & Dandan Zhang & Jia Yu & Xian-Kai Chen & Chihaya Adachi & Xiao-Hong Zhang, 2024. "Efficient, narrow-band, and stable electroluminescence from organoboron-nitrogen-carbonyl emitter," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Chao Li & Christoph Kaspar & Ping Zhou & Jung-Ching Liu & Outhmane Chahib & Thilo Glatzel & Robert Häner & Ulrich Aschauer & Silvio Decurtins & Shi-Xia Liu & Michael Thoss & Ernst Meyer & Rémy Pawlak, 2023. "Strong signature of electron-vibration coupling in molecules on Ag(111) triggered by tip-gated discharging," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Yang Luo & Fan-Fang Kong & Xiao-Jun Tian & Yun-Jie Yu & Shi-Hao Jing & Chao Zhang & Gong Chen & Yang Zhang & Yao Zhang & Xiao-Guang Li & Zhen-Yu Zhang & Zhen-Chao Dong, 2024. "Anomalously bright single-molecule upconversion electroluminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Siyu He & Xiaoqi Tang & Yunzhou Deng & Ni Yin & Wangxiao Jin & Xiuyuan Lu & Desui Chen & Chenyang Wang & Tulai Sun & Qi Chen & Yizheng Jin, 2023. "Anomalous efficiency elevation of quantum-dot light-emitting diodes induced by operational degradation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Katsuyuki Shizu & Hironori Kaji, 2024. "Quantitative prediction of rate constants and its application to organic emitters," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Wouter H. J. Peeters & Victor T. Lange & Abderrezak Belabbes & Max C. Hemert & Marvin Marco Jansen & Riccardo Farina & Marvin A. J. Tilburg & Marcel A. Verheijen & Silvana Botti & Friedhelm Bechstedt , 2024. "Direct bandgap quantum wells in hexagonal Silicon Germanium," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. A. Lennart Schleper & Kenichi Goushi & Christoph Bannwarth & Bastian Haehnle & Philipp J. Welscher & Chihaya Adachi & Alexander J. C. Kuehne, 2021. "Hot exciplexes in U-shaped TADF molecules with emission from locally excited states," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Sudhir Kumar & Tommaso Marcato & Frank Krumeich & Yen-Ting Li & Yu-Cheng Chiu & Chih-Jen Shih, 2022. "Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Mingu Kang & Hyunwoo Kim & Elham Oleiki & Yeonjeong Koo & Hyeongwoo Lee & Huitae Joo & Jinseong Choi & Taeyong Eom & Geunsik Lee & Yung Doug Suh & Kyoung-Duck Park, 2022. "Conformational heterogeneity of molecules physisorbed on a gold surface at room temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Yilong Zhou & Gaurav Arya, 2022. "Discovery of two-dimensional binary nanoparticle superlattices using global Monte Carlo optimization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Vibhuti Rai & Nico Balzer & Gabriel Derenbach & Christof Holzer & Marcel Mayor & Wulf Wulfhekel & Lukas Gerhard & Michal Valášek, 2023. "Hot luminescence from single-molecule chromophores electrically and mechanically self-decoupled by tripodal scaffolds," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32607-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.