IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32487-7.html
   My bibliography  Save this article

mTORC1 controls Golgi architecture and vesicle secretion by phosphorylation of SCYL1

Author

Listed:
  • Stéphanie Kaeser-Pebernard

    (University of Fribourg)

  • Christine Vionnet

    (University of Fribourg)

  • Muriel Mari

    (University of Groningen, University Medical Center Groningen
    Aarhus University)

  • Devanarayanan Siva Sankar

    (University of Fribourg)

  • Zehan Hu

    (University of Fribourg)

  • Carole Roubaty

    (University of Fribourg)

  • Esther Martínez-Martínez

    (University of Fribourg)

  • Huiyuan Zhao

    (University of Fribourg)

  • Miguel Spuch-Calvar

    (University of Fribourg
    Universidade de Vigo)

  • Alke Petri-Fink

    (University of Fribourg
    University of Fribourg)

  • Gregor Rainer

    (University of Fribourg)

  • Florian Steinberg

    (University of Freiburg)

  • Fulvio Reggiori

    (University of Groningen, University Medical Center Groningen
    Aarhus University
    Aarhus University)

  • Jörn Dengjel

    (University of Fribourg)

Abstract

The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and proliferation, supporting anabolic reactions and inhibiting catabolic pathways like autophagy. Its hyperactivation is a frequent event in cancer promoting tumor cell proliferation. Several intracellular membrane-associated mTORC1 pools have been identified, linking its function to distinct subcellular localizations. Here, we characterize the N-terminal kinase-like protein SCYL1 as a Golgi-localized target through which mTORC1 controls organelle distribution and extracellular vesicle secretion in breast cancer cells. Under growth conditions, SCYL1 is phosphorylated by mTORC1 on Ser754, supporting Golgi localization. Upon mTORC1 inhibition, Ser754 dephosphorylation leads to SCYL1 displacement to endosomes. Peripheral, dephosphorylated SCYL1 causes Golgi enlargement, redistribution of early and late endosomes and increased extracellular vesicle release. Thus, the mTORC1-controlled phosphorylation status of SCYL1 is an important determinant regulating subcellular distribution and function of endolysosomal compartments. It may also explain the pathophysiology underlying human genetic diseases such as CALFAN syndrome, which is caused by loss-of-function of SCYL1.

Suggested Citation

  • Stéphanie Kaeser-Pebernard & Christine Vionnet & Muriel Mari & Devanarayanan Siva Sankar & Zehan Hu & Carole Roubaty & Esther Martínez-Martínez & Huiyuan Zhao & Miguel Spuch-Calvar & Alke Petri-Fink &, 2022. "mTORC1 controls Golgi architecture and vesicle secretion by phosphorylation of SCYL1," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32487-7
    DOI: 10.1038/s41467-022-32487-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32487-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32487-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew C. Hsieh & Yi Liu & Merritt P. Edlind & Nicholas T. Ingolia & Matthew R. Janes & Annie Sher & Evan Y. Shi & Craig R. Stumpf & Carly Christensen & Michael J. Bonham & Shunyou Wang & Pingda Ren &, 2012. "The translational landscape of mTOR signalling steers cancer initiation and metastasis," Nature, Nature, vol. 485(7396), pages 55-61, May.
    2. Tomasz M. Witkos & Wing Lee Chan & Merja Joensuu & Manuel Rhiel & Ed Pallister & Jane Thomas-Oates & A. Paul Mould & Alex A. Mironov & Christophe Biot & Yann Guerardel & Willy Morelle & Daniel Ungar &, 2019. "GORAB scaffolds COPI at the trans-Golgi for efficient enzyme recycling and correct protein glycosylation," Nature Communications, Nature, vol. 10(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Castillo-Hair & Stephen Fedak & Ban Wang & Johannes Linder & Kyle Havens & Michael Certo & Georg Seelig, 2024. "Optimizing 5’UTRs for mRNA-delivered gene editing using deep learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Kathrin Leppek & Gun Woo Byeon & Wipapat Kladwang & Hannah K. Wayment-Steele & Craig H. Kerr & Adele F. Xu & Do Soon Kim & Ved V. Topkar & Christian Choe & Daphna Rothschild & Gerald C. Tiu & Roger We, 2022. "Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    3. Abdul Saleem & Shifa Bibi & Asadullah Lakho & Salman Hussain, 2022. "Determinants Of Customer Switching Intention In Pakistan: A Case Of Cellular Services," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 11(3), pages 27-36.
    4. Fajin Li & Jianhuo Fang & Yifan Yu & Sijia Hao & Qin Zou & Qinglin Zeng & Xuerui Yang, 2023. "Reanalysis of ribosome profiling datasets reveals a function of rocaglamide A in perturbing the dynamics of translation elongation via eIF4A," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Mykola Roiuk & Marilena Neff & Aurelio A. Teleman, 2024. "eIF4E-independent translation is largely eIF3d-dependent," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Peter T. A. Linders & Eveline C. F. Gerretsen & Angel Ashikov & Mari-Anne Vals & Rinse Boer & Natalia H. Revelo & Richard Arts & Melissa Baerenfaenger & Fokje Zijlstra & Karin Huijben & Kimiyo Raymond, 2021. "Congenital disorder of glycosylation caused by starting site-specific variant in syntaxin-5," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    7. Guo-dong Cao & Xing-yu Xu & Jia-wei Zhang & Bo Chen & Mao-ming Xiong, 2016. "Phosphorylated Mammalian Target of Rapamycin p-mTOR Is a Favorable Prognostic Factor than mTOR in Gastric Cancer," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-16, December.
    8. Tal Levy & Kai Voeltzke & Laura Hruby & Khawla Alasad & Zuelal Bas & Marteinn Snaebjörnsson & Ran Marciano & Katerina Scharov & Mélanie Planque & Kim Vriens & Stefan Christen & Cornelius M. Funk & Chr, 2024. "mTORC1 regulates cell survival under glucose starvation through 4EBP1/2-mediated translational reprogramming of fatty acid metabolism," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32487-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.