IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32388-9.html
   My bibliography  Save this article

Social incentivization of instrumental choice in mice requires amygdala-prelimbic cortex-nucleus accumbens connectivity

Author

Listed:
  • Henry W. Kietzman

    (Emory University School of Medicine
    Emory University School of Medicine
    Emory University School of Medicine
    Emory University)

  • Gracy Trinoskey-Rice

    (Emory University School of Medicine
    Emory University School of Medicine
    Emory University)

  • Sarah A. Blumenthal

    (Emory University School of Medicine
    Emory University
    Emory University)

  • Jidong D. Guo

    (Emory University)

  • Shannon L. Gourley

    (Emory University School of Medicine
    Emory University School of Medicine
    Emory University
    Emory University)

Abstract

Social experiences influence decision making, including decision making lacking explicit social content, yet mechanistic factors are unclear. We developed a new procedure, social incentivization of future choice (SIFC). Female mice are trained to nose poke for equally-preferred foods, then one food is paired with a novel conspecific, and the other with a novel object. Mice later respond more for the conspecific-associated food. Thus, prior social experience incentivizes later instrumental choice. SIFC is pervasive, occurring following multiple types of social experiences, and is not attributable to warmth or olfactory cues alone. SIFC requires the prelimbic prefrontal cortex (PL), but not the neighboring orbitofrontal cortex. Further, inputs from the basolateral amygdala to the PL and outputs to the nucleus accumbens are necessary for SIFC, but not memory for a conspecific. Basolateral amygdala→PL connections may signal the salience of social information, leading to the prioritization of coincident rewards via PL→nucleus accumbens outputs.

Suggested Citation

  • Henry W. Kietzman & Gracy Trinoskey-Rice & Sarah A. Blumenthal & Jidong D. Guo & Shannon L. Gourley, 2022. "Social incentivization of instrumental choice in mice requires amygdala-prelimbic cortex-nucleus accumbens connectivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32388-9
    DOI: 10.1038/s41467-022-32388-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32388-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32388-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ofer Yizhar & Lief E. Fenno & Matthias Prigge & Franziska Schneider & Thomas J. Davidson & Daniel J. O’Shea & Vikaas S. Sohal & Inbal Goshen & Joel Finkelstein & Jeanne T. Paz & Katja Stehfest & Roman, 2011. "Neocortical excitation/inhibition balance in information processing and social dysfunction," Nature, Nature, vol. 477(7363), pages 171-178, September.
    2. Gül Dölen & Ayeh Darvishzadeh & Kee Wui Huang & Robert C. Malenka, 2013. "Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin," Nature, Nature, vol. 501(7466), pages 179-184, September.
    3. James M. Otis & Vijay M. K. Namboodiri & Ana M. Matan & Elisa S. Voets & Emily P. Mohorn & Oksana Kosyk & Jenna A. McHenry & J. Elliott Robinson & Shanna L. Resendez & Mark A. Rossi & Garret D. Stuber, 2017. "Prefrontal cortex output circuits guide reward seeking through divergent cue encoding," Nature, Nature, vol. 543(7643), pages 103-107, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Jun Wang & Gui-Ying Zan & Cenglin Xu & Xue-Ping Li & Xuelian Shu & Song-Yu Yao & Xiao-Shan Xu & Xiaoyun Qiu & Yexiang Chen & Kai Jin & Qi-Xin Zhou & Jia-Yu Ye & Yi Wang & Lin Xu & Zhong Chen & Jing, 2023. "The claustrum-prelimbic cortex circuit through dynorphin/κ-opioid receptor signaling underlies depression-like behaviors associated with social stress etiology," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Zihao Chen & Yechao Han & Zheng Ma & Xinnian Wang & Surui Xu & Yong Tang & Alexei L. Vyssotski & Bailu Si & Yang Zhan, 2024. "A prefrontal-thalamic circuit encodes social information for social recognition," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Alexandre Castonguay & Sébastien Thomas & Frédéric Lesage & Christian Casanova, 2014. "Repetitive and Retinotopically Restricted Activation of the Dorsal Lateral Geniculate Nucleus with Optogenetics," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    4. Giulia Faini & Dimitrii Tanese & Clément Molinier & Cécile Telliez & Massilia Hamdani & Francois Blot & Christophe Tourain & Vincent Sars & Filippo Bene & Benoît C. Forget & Emiliano Ronzitti & Valent, 2023. "Ultrafast light targeting for high-throughput precise control of neuronal networks," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Andrea Bonassi & Ilaria Cataldo & Giulio Gabrieli & Moses Tandiono & Jia Nee Foo & Bruno Lepri & Gianluca Esposito, 2022. "The Interaction between Serotonin Transporter Allelic Variation and Maternal Care Modulates Instagram Sociability in a Sample of Singaporean Users," IJERPH, MDPI, vol. 19(9), pages 1-15, April.
    6. Pan Xu & Yuanlei Yue & Juntao Su & Xiaoqian Sun & Hongfei Du & Zhichao Liu & Rahul Simha & Jianhui Zhou & Chen Zeng & Hui Lu, 2022. "Pattern decorrelation in the mouse medial prefrontal cortex enables social preference and requires MeCP2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Robert N. Fetcho & Baila S. Hall & David J. Estrin & Alexander P. Walsh & Peter J. Schuette & Jesse Kaminsky & Ashna Singh & Jacob Roshgodal & Charlotte C. Bavley & Viraj Nadkarni & Susan Antigua & Th, 2023. "Regulation of social interaction in mice by a frontostriatal circuit modulated by established hierarchical relationships," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Qingtao Sun & Jianping Zhang & Anan Li & Mei Yao & Guangcai Liu & Siqi Chen & Yue Luo & Zhi Wang & Hui Gong & Xiangning Li & Qingming Luo, 2022. "Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    9. Hyosang Kim & Doyoun Kim & Yisul Cho & Kyungdeok Kim & Junyeop Daniel Roh & Yangsik Kim & Esther Yang & Seong Soon Kim & Sunjoo Ahn & Hyun Kim & Hyojin Kang & Yongchul Bae & Eunjoon Kim, 2022. "Early postnatal serotonin modulation prevents adult-stage deficits in Arid1b-deficient mice through synaptic transcriptional reprogramming," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Luye Qin & Jamal B. Williams & Tao Tan & Tiaotiao Liu & Qing Cao & Kaijie Ma & Zhen Yan, 2021. "Deficiency of autism risk factor ASH1L in prefrontal cortex induces epigenetic aberrations and seizures," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    11. Kyuhyun Choi & Eugenio Piasini & Edgar Díaz-Hernández & Luigim Vargas Cifuentes & Nathan T. Henderson & Elizabeth N. Holly & Manivannan Subramaniyan & Charles R. Gerfen & Marc V. Fuccillo, 2023. "Distributed processing for value-based choice by prelimbic circuits targeting anterior-posterior dorsal striatal subregions in male mice," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Lloyd E. Russell & Mehmet Fişek & Zidan Yang & Lynn Pei Tan & Adam M. Packer & Henry W. P. Dalgleish & Selmaan N. Chettih & Christopher D. Harvey & Michael Häusser, 2024. "The influence of cortical activity on perception depends on behavioral state and sensory context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Rodrigo G. Fernandez Lahore & Niccolò P. Pampaloni & Enrico Schiewer & M.-Marcel Heim & Linda Tillert & Johannes Vierock & Johannes Oppermann & Jakob Walther & Dietmar Schmitz & David Owald & Andrew J, 2022. "Calcium-permeable channelrhodopsins for the photocontrol of calcium signalling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. M. E. Flanigan & O. J. Hon & S. D’Ambrosio & K. M. Boyt & L. Hassanein & M. Castle & H. L. Haun & M. M. Pina & T. L. Kash, 2023. "Subcortical serotonin 5HT2c receptor-containing neurons sex-specifically regulate binge-like alcohol consumption, social, and arousal behaviors in mice," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    15. Weijie Ye & Xiaoying Chen, 2023. "Effects of NMDA Receptor Hypofunction on Inhibitory Control in a Two-Layer Neural Circuit Model," Mathematics, MDPI, vol. 11(19), pages 1-12, September.
    16. Kansai Fukumitsu & Misato Kaneko & Teppo Maruyama & Chihiro Yoshihara & Arthur J. Huang & Thomas J. McHugh & Shigeyoshi Itohara & Minoru Tanaka & Kumi O. Kuroda, 2022. "Amylin-Calcitonin receptor signaling in the medial preoptic area mediates affiliative social behaviors in female mice," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Yoav Printz & Pritish Patil & Mathias Mahn & Asaf Benjamin & Anna Litvin & Rivka Levy & Max Bringmann & Ofer Yizhar, 2023. "Determinants of functional synaptic connectivity among amygdala-projecting prefrontal cortical neurons in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Jung Ho Hyun & Kenichiro Nagahama & Ho Namkung & Neymi Mignocchi & Seung-Eon Roh & Patrick Hannan & Sarah Krüssel & Chuljung Kwak & Abigail McElroy & Bian Liu & Mingguang Cui & Seunghwan Lee & Dongmin, 2022. "Tagging active neurons by soma-targeted Cal-Light," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Kelsey M. Vollmer & Lisa M. Green & Roger I. Grant & Kion T. Winston & Elizabeth M. Doncheck & Christopher W. Bowen & Jacqueline E. Paniccia & Rachel E. Clarke & Annika Tiller & Preston N. Siegler & B, 2022. "An opioid-gated thalamoaccumbal circuit for the suppression of reward seeking in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Noemi S Araújo & Selvin Z Reyes-Garcia & João A F Brogin & Douglas D Bueno & Esper A Cavalheiro & Carla A Scorza & Jean Faber, 2022. "Chaotic and stochastic dynamics of epileptiform-like activities in sclerotic hippocampus resected from patients with pharmacoresistant epilepsy," PLOS Computational Biology, Public Library of Science, vol. 18(4), pages 1-31, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32388-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.