IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32283-3.html
   My bibliography  Save this article

A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma

Author

Listed:
  • Yiming Lu

    (State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine)

  • Aiqing Yang

    (State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine)

  • Cheng Quan

    (State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine)

  • Yingwei Pan

    (Chinese PLA General Hospital)

  • Haoyun Zhang

    (Chinese PLA General Hospital)

  • Yuanfeng Li

    (State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine)

  • Chengming Gao

    (State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine)

  • Hao Lu

    (State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine)

  • Xueting Wang

    (State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine
    Hebei University)

  • Pengbo Cao

    (State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine)

  • Hongxia Chen

    (State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine)

  • Shichun Lu

    (Chinese PLA General Hospital)

  • Gangqiao Zhou

    (State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine
    Nanjing Medical University)

Abstract

Hepatocellular carcinoma (HCC) represents a paradigm of the relation between tumor microenvironment (TME) and tumor development. Here, we generate a single-cell atlas of the multicellular ecosystem of HCC from four tissue sites. We show the enrichment of central memory T cells (TCM) in the early tertiary lymphoid structures (E-TLSs) in HCC and assess the relationships between chronic HBV/HCV infection and T cell infiltration and exhaustion. We find the MMP9+ macrophages to be terminally differentiated tumor-associated macrophages (TAMs) and PPARγ to be the pivotal transcription factor driving their differentiation. We also characterize the heterogeneous subpopulations of malignant hepatocytes and their multifaceted functions in shaping the immune microenvironment of HCC. Finally, we identify seven microenvironment-based subtypes that can predict prognosis of HCC patients. Collectively, this large-scale atlas deepens our understanding of the HCC microenvironment, which might facilitate the development of new immune therapy strategies for this malignancy.

Suggested Citation

  • Yiming Lu & Aiqing Yang & Cheng Quan & Yingwei Pan & Haoyun Zhang & Yuanfeng Li & Chengming Gao & Hao Lu & Xueting Wang & Pengbo Cao & Hongxia Chen & Shichun Lu & Gangqiao Zhou, 2022. "A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32283-3
    DOI: 10.1038/s41467-022-32283-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32283-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32283-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Justin I. Odegaard & Roberto R. Ricardo-Gonzalez & Matthew H. Goforth & Christine R. Morel & Vidya Subramanian & Lata Mukundan & Alex Red Eagle & Divya Vats & Frank Brombacher & Anthony W. Ferrante & , 2007. "Macrophage-specific PPARγ controls alternative activation and improves insulin resistance," Nature, Nature, vol. 447(7148), pages 1116-1120, June.
    2. Lei Zhang & Xin Yu & Liangtao Zheng & Yuanyuan Zhang & Yansen Li & Qiao Fang & Ranran Gao & Boxi Kang & Qiming Zhang & Julie Y. Huang & Hiroyasu Konno & Xinyi Guo & Yingjiang Ye & Songyuan Gao & Shan , 2018. "Lineage tracking reveals dynamic relationships of T cells in colorectal cancer," Nature, Nature, vol. 564(7735), pages 268-272, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delilah Hendriks & Benedetta Artegiani & Thanasis Margaritis & Iris Zoutendijk & Susana Chuva de Sousa Lopes & Hans Clevers, 2024. "Mapping of mitogen and metabolic sensitivity in organoids defines requirements for human hepatocyte growth," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Alexander Coulton & Jun Murai & Danwen Qian & Krupa Thakkar & Claire E. Lewis & Kevin Litchfield, 2024. "Using a pan-cancer atlas to investigate tumour associated macrophages as regulators of immunotherapy response," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Yunxing Shi & Zongfeng Wu & Shaoru Liu & Dinglan Zuo & Yi Niu & Yuxiong Qiu & Liang Qiao & Wei He & Jiliang Qiu & Yunfei Yuan & Guocan Wang & Binkui Li, 2024. "Targeting PRMT3 impairs methylation and oligomerization of HSP60 to boost anti-tumor immunity by activating cGAS/STING signaling," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanchuan Li & Huamei Li & Cheng Peng & Ge Meng & Yijun Lu & Honglin Liu & Li Cui & Huan Zhou & Zhu Xu & Lingyun Sun & Lihong Liu & Qing Xiong & Beicheng Sun & Shiping Jiao, 2024. "Unraveling the spatial organization and development of human thymocytes through integration of spatial transcriptomics and single-cell multi-omics profiling," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    2. Keyong Sun & Runda Xu & Fuhai Ma & Naixue Yang & Yang Li & Xiaofeng Sun & Peng Jin & Wenzhe Kang & Lemei Jia & Jianping Xiong & Haitao Hu & Yantao Tian & Xun Lan, 2022. "scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Handong Sun & Lishen Zhang & Zhonglin Wang & Danling Gu & Mengyan Zhu & Yun Cai & Lu Li & Jiaqi Tang & Bin Huang & Bakwatanisa Bosco & Ning Li & Lingxiang Wu & Wei Wu & Liangyu Li & Yuan Liang & Lin L, 2023. "Single-cell transcriptome analysis indicates fatty acid metabolism-mediated metastasis and immunosuppression in male breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Yang Liu & Shuang-Yan Ye & Shuai He & Dong-Mei Chi & Xiu-Zhi Wang & Yue-Feng Wen & Dong Ma & Run-Cong Nie & Pu Xiang & You Zhou & Zhao-Hui Ruan & Rou-Jun Peng & Chun-Ling Luo & Pan-Pan Wei & Guo-Wang , 2024. "Single-cell and spatial transcriptome analyses reveal tertiary lymphoid structures linked to tumour progression and immunotherapy response in nasopharyngeal carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Samar Elorbany & Chiara Berlato & Larissa S. Carnevalli & Eleni Maniati & Simon T. Barry & Jun Wang & Ranjit Manchanda & Julia Kzhyshkowska & Frances Balkwill, 2024. "Immunotherapy that improves response to chemotherapy in high-grade serous ovarian cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    6. Sarah Cappuyns & Gino Philips & Vincent Vandecaveye & Bram Boeckx & Rogier Schepers & Thomas Van Brussel & Ingrid Arijs & Aurelie Mechels & Ayse Bassez & Francesca Lodi & Joris Jaekers & Halit Topal &, 2023. "PD-1- CD45RA+ effector-memory CD8 T cells and CXCL10+ macrophages are associated with response to atezolizumab plus bevacizumab in advanced hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Michele Bortolomeazzi & Lucia Montorsi & Damjan Temelkovski & Mohamed Reda Keddar & Amelia Acha-Sagredo & Michael J. Pitcher & Gianluca Basso & Luigi Laghi & Manuel Rodriguez-Justo & Jo Spencer & Fran, 2022. "A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Mei Lin & Xiao-Long Zhang & Rui You & You-Ping Liu & Hong-Min Cai & Li-Zhi Liu & Xue-Fei Liu & Xiong Zou & Yu-Long Xie & Ru-Hai Zou & Yi-Nuan Zhang & Rui Sun & Wei-Yi Feng & Hai-Yan Wang & Gui-Hua Tao, 2023. "Evolutionary route of nasopharyngeal carcinoma metastasis and its clinical significance," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    9. Silvia Tiberti & Carlotta Catozzi & Ottavio Croci & Mattia Ballerini & Danilo Cagnina & Chiara Soriani & Caterina Scirgolea & Zheng Gong & Jiatai He & Angeli D. Macandog & Amir Nabinejad & Carina B. N, 2022. "GZMKhigh CD8+ T effector memory cells are associated with CD15high neutrophil abundance in non-metastatic colorectal tumors and predict poor clinical outcome," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    10. Dharti Shantaram & Rebecca Hoyd & Alecia M. Blaszczak & Linda Antwi & Anahita Jalilvand & Valerie P. Wright & Joey Liu & Alan J. Smith & David Bradley & William Lafuse & YunZhou Liu & Nyelia F. Willia, 2024. "Obesity-associated microbiomes instigate visceral adipose tissue inflammation by recruitment of distinct neutrophils," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Sandra Tietscher & Johanna Wagner & Tobias Anzeneder & Claus Langwieder & Martin Rees & Bettina Sobottka & Natalie Souza & Bernd Bodenmiller, 2023. "A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Jingjing Qi & Hongxiang Sun & Yao Zhang & Zhengting Wang & Zhenzhen Xun & Ziyi Li & Xinyu Ding & Rujuan Bao & Liwen Hong & Wenqing Jia & Fei Fang & Hongzhi Liu & Lei Chen & Jie Zhong & Duowu Zou & Lia, 2022. "Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    13. Victoria Stary & Ram V. Pandey & Julia List & Lisa Kleissl & Florian Deckert & Julijan Kabiljo & Johannes Laengle & Vasileios Gerakopoulos & Rudolf Oehler & Lukas Watzke & Matthias Farlik & Samuel W. , 2024. "Dysfunctional tumor-infiltrating Vδ1 + T lymphocytes in microsatellite-stable colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Vidhya M. Ravi & Nicolas Neidert & Paulina Will & Kevin Joseph & Julian P. Maier & Jan Kückelhaus & Lea Vollmer & Jonathan M. Goeldner & Simon P. Behringer & Florian Scherer & Melanie Boerries & Marie, 2022. "T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Laura Yerly & Christine Pich-Bavastro & Jeremy Domizio & Tania Wyss & Stéphanie Tissot-Renaud & Michael Cangkrama & Michel Gilliet & Sabine Werner & François Kuonen, 2022. "Integrated multi-omics reveals cellular and molecular interactions governing the invasive niche of basal cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Yan Li & Bing Wang & Wentao Yang & Fahan Ma & Jianling Zou & Kai Li & Subei Tan & Jinwen Feng & Yunzhi Wang & Zhaoyu Qin & Zhiyu Chen & Chen Ding, 2024. "Longitudinal plasma proteome profiling reveals the diversity of biomarkers for diagnosis and cetuximab therapy response of colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    17. Lilong Liu & Yaxin Hou & Changqi Deng & Zhen Tao & Zhaohui Chen & Junyi Hu & Ke Chen, 2022. "Single cell sequencing reveals that CD39 inhibition mediates changes to the tumor microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Hussein A. Abbas & Dapeng Hao & Katarzyna Tomczak & Praveen Barrodia & Jin Seon Im & Patrick K. Reville & Zoe Alaniz & Wei Wang & Ruiping Wang & Feng Wang & Gheath Al-Atrash & Koichi Takahashi & Jing , 2021. "Single cell T cell landscape and T cell receptor repertoire profiling of AML in context of PD-1 blockade therapy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    19. Tu-Xiong Huang & Hui-Si Huang & Shao-Wei Dong & Jia-Yan Chen & Bin Zhang & Hua-Hui Li & Tian-Tian Zhang & Qiang Xie & Qiao-Yun Long & Yang Yang & Lin-Yuan Huang & Pan Zhao & Jiong Bi & Xi-Feng Lu & Fa, 2024. "ATP6V0A1-dependent cholesterol absorption in colorectal cancer cells triggers immunosuppressive signaling to inactivate memory CD8+ T cells," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    20. Alexander H. Lee & Lu Sun & Aaron Y. Mochizuki & Jeremy G. Reynoso & Joey Orpilla & Frances Chow & Jenny C. Kienzler & Richard G. Everson & David A. Nathanson & Steven J. Bensinger & Linda M. Liau & T, 2021. "Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma," Nature Communications, Nature, vol. 12(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32283-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.