IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31743-0.html
   My bibliography  Save this article

Decoherence of V $${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ B − spin defects in monoisotopic hexagonal boron nitride

Author

Listed:
  • A. Haykal

    (Université de Montpellier and CNRS)

  • R. Tanos

    (Université de Montpellier and CNRS)

  • N. Minotto

    (Université de Montpellier and CNRS)

  • A. Durand

    (Université de Montpellier and CNRS)

  • F. Fabre

    (Université de Montpellier and CNRS)

  • J. Li

    (Kansas State University)

  • J. H. Edgar

    (Kansas State University)

  • V. Ivády

    (Max Planck Institute for the Physics of Complex Systems
    Linköping University)

  • A. Gali

    (Wigner Research Centre for Physics
    Budapest University of Technology and Economics)

  • T. Michel

    (Université de Montpellier and CNRS)

  • A. Dréau

    (Université de Montpellier and CNRS)

  • B. Gil

    (Université de Montpellier and CNRS)

  • G. Cassabois

    (Université de Montpellier and CNRS)

  • V. Jacques

    (Université de Montpellier and CNRS)

Abstract

Spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of flexible two-dimensional quantum sensing platforms. Here we rely on hBN crystals isotopically enriched with either 10B or 11B to investigate the isotope-dependent properties of a spin defect featuring a broadband photoluminescence signal in the near infrared. By analyzing the hyperfine structure of the spin defect while changing the boron isotope, we first confirm that it corresponds to the negatively charged boron-vacancy center ( $${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ V B − ). We then show that its spin coherence properties are slightly improved in 10B-enriched samples. This is supported by numerical simulations employing cluster correlation expansion methods, which reveal the importance of the hyperfine Fermi contact term for calculating the coherence time of point defects in hBN. Using cross-relaxation spectroscopy, we finally identify dark electron spin impurities as an additional source of decoherence. This work provides new insights into the properties of $${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ V B − spin defects, which are valuable for the future development of hBN-based quantum sensing foils.

Suggested Citation

  • A. Haykal & R. Tanos & N. Minotto & A. Durand & F. Fabre & J. Li & J. H. Edgar & V. Ivády & A. Gali & T. Michel & A. Dréau & B. Gil & G. Cassabois & V. Jacques, 2022. "Decoherence of V $${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ B − spin defects in monoisotopic hexagonal boron nitride," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31743-0
    DOI: 10.1038/s41467-022-31743-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31743-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31743-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. B. Hensen & H. Bernien & A. E. Dréau & A. Reiserer & N. Kalb & M. S. Blok & J. Ruitenberg & R. F. L. Vermeulen & R. N. Schouten & C. Abellán & W. Amaya & V. Pruneri & M. W. Mitchell & M. Markham & D. , 2015. "Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres," Nature, Nature, vol. 526(7575), pages 682-686, October.
    2. G. Waldherr & Y. Wang & S. Zaiser & M. Jamali & T. Schulte-Herbrüggen & H. Abe & T. Ohshima & J. Isoya & J. F. Du & P. Neumann & J. Wrachtrup, 2014. "Quantum error correction in a solid-state hybrid spin register," Nature, Nature, vol. 506(7487), pages 204-207, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xingyu Gao & Sumukh Vaidya & Saakshi Dikshit & Peng Ju & Kunhong Shen & Yuanbin Jin & Shixiong Zhang & Tongcang Li, 2024. "Nanotube spin defects for omnidirectional magnetic field sensing," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Ruotian Gong & Xinyi Du & Eli Janzen & Vincent Liu & Zhongyuan Liu & Guanghui He & Bingtian Ye & Tongcang Li & Norman Y. Yao & James H. Edgar & Erik A. Henriksen & Chong Zu, 2024. "Isotope engineering for spin defects in van der Waals materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Andrew J. Ramsay & Reza Hekmati & Charlie J. Patrickson & Simon Baber & David R. M. Arvidsson-Shukur & Anthony J. Bennett & Isaac J. Luxmoore, 2023. "Coherence protection of spin qubits in hexagonal boron nitride," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Ruotian Gong & Guanghui He & Xingyu Gao & Peng Ju & Zhongyuan Liu & Bingtian Ye & Erik A. Henriksen & Tongcang Li & Chong Zu, 2023. "Coherent dynamics of strongly interacting electronic spin defects in hexagonal boron nitride," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Roberto Rizzato & Martin Schalk & Stephan Mohr & Jens C. Hermann & Joachim P. Leibold & Fleming Bruckmaier & Giovanna Salvitti & Chenjiang Qian & Peirui Ji & Georgy V. Astakhov & Ulrich Kentsch & Manf, 2023. "Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruotian Gong & Xinyi Du & Eli Janzen & Vincent Liu & Zhongyuan Liu & Guanghui He & Bingtian Ye & Tongcang Li & Norman Y. Yao & James H. Edgar & Erik A. Henriksen & Chong Zu, 2024. "Isotope engineering for spin defects in van der Waals materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Ziqian Li & Tanay Roy & David Rodríguez Pérez & Kan-Heng Lee & Eliot Kapit & David I. Schuster, 2024. "Autonomous error correction of a single logical qubit using two transmons," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    3. Yang, Yan-Han & Yang, Xue & Luo, Ming-Xing, 2023. "Device-independently verifying full network nonlocality of quantum networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    4. Gomes, V.S. & Dieguez, P.R. & Vasconcelos, H.M., 2022. "Realism-based nonlocality: Invariance under local unitary operations and asymptotic decay for thermal correlated states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
    5. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. John C. Thomas & Wei Chen & Yihuang Xiong & Bradford A. Barker & Junze Zhou & Weiru Chen & Antonio Rossi & Nolan Kelly & Zhuohang Yu & Da Zhou & Shalini Kumari & Edward S. Barnard & Joshua A. Robinson, 2024. "A substitutional quantum defect in WS2 discovered by high-throughput computational screening and fabricated by site-selective STM manipulation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Chao Wang & Ignatius William Primaatmaja & Hong Jie Ng & Jing Yan Haw & Raymond Ho & Jianran Zhang & Gong Zhang & Charles Lim, 2023. "Provably-secure quantum randomness expansion with uncharacterised homodyne detection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Dario Lago-Rivera & Jelena V. Rakonjac & Samuele Grandi & Hugues de Riedmatten, 2023. "Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    9. G. L. Stolpe & D. P. Kwiatkowski & C. E. Bradley & J. Randall & M. H. Abobeih & S. A. Breitweiser & L. C. Bassett & M. Markham & D. J. Twitchen & T. H. Taminiau, 2024. "Mapping a 50-spin-qubit network through correlated sensing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Timothy Y. Chow, 2023. "A Mathematician Reads the Kalam Cosmological Argument," The Mathematical Intelligencer, Springer, vol. 45(2), pages 150-158, June.
    11. Nadia O. Antoniadis & Mark R. Hogg & Willy F. Stehl & Alisa Javadi & Natasha Tomm & Rüdiger Schott & Sascha R. Valentin & Andreas D. Wieck & Arne Ludwig & Richard J. Warburton, 2023. "Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Guido Masella & Nikolay V. Prokof’ev & Guido Pupillo, 2022. "Anti-drude metal of bosons," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. K. S. Cujia & K. Herb & J. Zopes & J. M. Abendroth & C. L. Degen, 2022. "Parallel detection and spatial mapping of large nuclear spin clusters," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Amélie Piveteau & Jef Pauwels & Emil Håkansson & Sadiq Muhammad & Mohamed Bourennane & Armin Tavakoli, 2022. "Entanglement-assisted quantum communication with simple measurements," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    15. Xiao Liu & Xiao-Min Hu & Tian-Xiang Zhu & Chao Zhang & Yi-Xin Xiao & Jia-Le Miao & Zhong-Wen Ou & Pei-Yun Li & Bi-Heng Liu & Zong-Quan Zhou & Chuan-Feng Li & Guang-Can Guo, 2024. "Nonlocal photonic quantum gates over 7.0 km," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Ruotian Gong & Guanghui He & Xingyu Gao & Peng Ju & Zhongyuan Liu & Bingtian Ye & Erik A. Henriksen & Tongcang Li & Chong Zu, 2023. "Coherent dynamics of strongly interacting electronic spin defects in hexagonal boron nitride," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31743-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.