IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14608-2.html
   My bibliography  Save this article

A synthetic peptide library for benchmarking crosslinking-mass spectrometry search engines for proteins and protein complexes

Author

Listed:
  • Rebecca Beveridge

    (Vienna Biocenter (VBC))

  • Johannes Stadlmann

    (Vienna Biocenter (VBC))

  • Josef M. Penninger

    (Vienna Biocenter (VBC)
    Vancouver Campus)

  • Karl Mechtler

    (Vienna Biocenter (VBC)
    Vienna Biocenter (VBC))

Abstract

Crosslinking-mass spectrometry (XL-MS) serves to identify interaction sites between proteins. Numerous search engines for crosslink identification exist, but lack of ground truth samples containing known crosslinks has precluded their systematic validation. Here we report on XL-MS data arising from measuring synthetic peptide libraries that provide the unique benefit of knowing which identified crosslinks are true and which are false. The data are analysed with the most frequently used search engines and the results filtered to an estimated false discovery rate of 5%. We find that the actual false crosslink identification rates range from 2.4 to 32%, depending on the analysis strategy employed. Furthermore, the use of MS-cleavable crosslinkers does not reduce the false discovery rate compared to non-cleavable crosslinkers. We anticipate that the datasets acquired during this research will further drive optimisation and development of XL-MS search engines, thereby advancing our understanding of vital biological interactions.

Suggested Citation

  • Rebecca Beveridge & Johannes Stadlmann & Josef M. Penninger & Karl Mechtler, 2020. "A synthetic peptide library for benchmarking crosslinking-mass spectrometry search engines for proteins and protein complexes," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14608-2
    DOI: 10.1038/s41467-020-14608-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14608-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14608-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Matzinger & Adrian Vasiu & Mathias Madalinski & Fränze Müller & Florian Stanek & Karl Mechtler, 2022. "Mimicked synthetic ribosomal protein complex for benchmarking crosslinking mass spectrometry workflows," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Jian-Hua Wang & Yu-Liang Tang & Zhou Gong & Rohit Jain & Fan Xiao & Yu Zhou & Dan Tan & Qiang Li & Niu Huang & Shu-Qun Liu & Keqiong Ye & Chun Tang & Meng-Qiu Dong & Xiaoguang Lei, 2022. "Characterization of protein unfolding by fast cross-linking mass spectrometry using di-ortho-phthalaldehyde cross-linkers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Hugo Gizardin-Fredon & Paulo E. Santo & Marie-Eve Chagot & Bruno Charpentier & Tiago M. Bandeiras & Xavier Manival & Oscar Hernandez-Alba & Sarah Cianférani, 2024. "Denaturing mass photometry for rapid optimization of chemical protein-protein cross-linking reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14608-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.