IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31156-z.html
   My bibliography  Save this article

Dynamic interaction of BRCA2 with telomeric G-quadruplexes underlies telomere replication homeostasis

Author

Listed:
  • Junyeop Lee

    (Seoul National University)

  • Keewon Sung

    (Seoul National University)

  • So Young Joo

    (Seoul National University)

  • Jun-Hyeon Jeong

    (Seoul National University)

  • Seong Keun Kim

    (Seoul National University)

  • Hyunsook Lee

    (Seoul National University)

Abstract

BRCA2-deficient cells precipitate telomere shortening upon collapse of stalled replication forks. Here, we report that the dynamic interaction between BRCA2 and telomeric G-quadruplex (G4), the non-canonical four-stranded secondary structure, underlies telomere replication homeostasis. We find that the OB-folds of BRCA2 binds to telomeric G4, which can be an obstacle during replication. We further demonstrate that BRCA2 associates with G-triplex (G3)-derived intermediates, which are likely to form during direct interconversion between parallel and non-parallel G4. Intriguingly, BRCA2 binding to G3 intermediates promoted RAD51 recruitment to the telomere G4. Furthermore, MRE11 resected G4-telomere, which was inhibited by BRCA2. Pathogenic mutations at the OB-folds abrogated the binding with telomere G4, indicating that the way BRCA2 associates with telomere is innate to its tumor suppressor activity. Collectively, we propose that BRCA2 binding to telomeric G4 remodels it and allows RAD51-mediated restart of the G4-driven replication fork stalling, simultaneously preventing MRE11-mediated breakdown of telomere.

Suggested Citation

  • Junyeop Lee & Keewon Sung & So Young Joo & Jun-Hyeon Jeong & Seong Keun Kim & Hyunsook Lee, 2022. "Dynamic interaction of BRCA2 with telomeric G-quadruplexes underlies telomere replication homeostasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31156-z
    DOI: 10.1038/s41467-022-31156-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31156-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31156-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jennifer M. Mason & Yuen-Ling Chan & Ralph W. Weichselbaum & Douglas K. Bishop, 2019. "Non-enzymatic roles of human RAD51 at stalled replication forks," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Lina Sieverling & Chen Hong & Sandra D. Koser & Philip Ginsbach & Kortine Kleinheinz & Barbara Hutter & Delia M. Braun & Isidro Cortés-Ciriano & Ruibin Xi & Rolf Kabbe & Peter J. Park & Roland Eils & , 2020. "Genomic footprints of activated telomere maintenance mechanisms in cancer," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    3. Gary N. Parkinson & Michael P. H. Lee & Stephen Neidle, 2002. "Crystal structure of parallel quadruplexes from human telomeric DNA," Nature, Nature, vol. 417(6891), pages 876-880, June.
    4. Ming Lei & Elaine R. Podell & Peter Baumann & Thomas R. Cech, 2003. "DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA," Nature, Nature, vol. 426(6963), pages 198-203, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilaria Rosso & Corey Jones-Weinert & Francesca Rossiello & Matteo Cabrini & Silvia Brambillasca & Leonel Munoz-Sagredo & Zeno Lavagnino & Emanuele Martini & Enzo Tedone & Massimiliano Garre’ & Julio A, 2023. "Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Fei Li & Yizhe Wang & Inah Hwang & Ja-Young Jang & Libo Xu & Zhong Deng & Eun Young Yu & Yiming Cai & Caizhi Wu & Zhenbo Han & Yu-Han Huang & Xiangao Huang & Ling Zhang & Jun Yao & Neal F. Lue & Paul , 2023. "Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Julie Livingstone & Yu-Jia Shiah & Takafumi N. Yamaguchi & Lawrence E. Heisler & Vincent Huang & Robert Lesurf & Tsumugi Gebo & Benjamin Carlin & Stefan Eng & Erik Drysdale & Jeffrey Green & Theodorus, 2021. "The telomere length landscape of prostate cancer," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Akbar Zainu & Pauline Dupaigne & Soumya Bouchouika & Julien Cau & Julie A. J. Clément & Pauline Auffret & Virginie Ropars & Jean-Baptiste Charbonnier & Bernard Massy & Raphael Mercier & Rajeev Kumar &, 2024. "FIGNL1-FIRRM is essential for meiotic recombination and prevents DNA damage-independent RAD51 and DMC1 loading," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Kai-Hang Lei & Han-Lin Yang & Hao-Yen Chang & Hsin-Yi Yeh & Dinh Duc Nguyen & Tzu-Yu Lee & Xinxing Lyu & Megan Chastain & Weihang Chai & Hung-Wen Li & Peter Chi, 2021. "Crosstalk between CST and RPA regulates RAD51 activity during replication stress," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. N. Shukla & M. F. Levine & G. Gundem & D. Domenico & B. Spitzer & N. Bouvier & J. E. Arango-Ossa & D. Glodzik & J. S. Medina-Martínez & U. Bhanot & J. Gutiérrez-Abril & Y. Zhou & E. Fiala & E. Stockfi, 2022. "Feasibility of whole genome and transcriptome profiling in pediatric and young adult cancers," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Philip S. Robinson & Laura E. Thomas & Federico Abascal & Hyunchul Jung & Luke M. R. Harvey & Hannah D. West & Sigurgeir Olafsson & Bernard C. H. Lee & Tim H. H. Coorens & Henry Lee-Six & Laura Butlin, 2022. "Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Angela M. Hinchie & Samantha L. Sanford & Kelly E. Loughridge & Rachel M. Sutton & Anishka H. Parikh & Agustin A. Gil Silva & Daniel I. Sullivan & Pattra Chun-On & Matthew R. Morrell & John F. McDyer , 2024. "A persistent variant telomere sequence in a human pedigree," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Francesc Muyas & Manuel José Gómez Rodriguez & Rita Cascão & Angela Afonso & Carolin M. Sauer & Claudia C. Faria & Isidro Cortés-Ciriano & Ignacio Flores, 2024. "The ALT pathway generates telomere fusions that can be detected in the blood of cancer patients," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31156-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.