IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30912-5.html
   My bibliography  Save this article

High critical current density and high-tolerance superconductivity in high-entropy alloy thin films

Author

Listed:
  • Soon-Gil Jung

    (Sungkyunkwan University
    Sungkyunkwan University)

  • Yoonseok Han

    (Sungkyunkwan University
    Sungkyunkwan University)

  • Jin Hee Kim

    (Kyung Hee University
    Kyung Hee University)

  • Rahmatul Hidayati

    (Kyung Hee University
    Kyung Hee University)

  • Jong-Soo Rhyee

    (Kyung Hee University
    Kyung Hee University)

  • Jung Min Lee

    (Sungkyunkwan University)

  • Won Nam Kang

    (Sungkyunkwan University)

  • Woo Seok Choi

    (Sungkyunkwan University)

  • Hye-Ran Jeon

    (Korea Atomic Energy Research Institute)

  • Jaekwon Suk

    (Korea Atomic Energy Research Institute)

  • Tuson Park

    (Sungkyunkwan University
    Sungkyunkwan University)

Abstract

High-entropy alloy (HEA) superconductors—a new class of functional materials—can be utilized stably under extreme conditions, such as in space environments, owing to their high mechanical hardness and excellent irradiation tolerance. However, the feasibility of practical applications of HEA superconductors has not yet been demonstrated because the critical current density (Jc) for HEA superconductors has not yet been adequately characterized. Here, we report the fabrication of high-quality superconducting (SC) thin films of Ta–Nb–Hf–Zr–Ti HEAs via a pulsed laser deposition. The thin films exhibit a large Jc of >1 MA cm−2 at 4.2 K and are therefore favorable for SC devices as well as large-scale applications. In addition, they show extremely robust superconductivity to irradiation-induced disorder controlled by the dose of Kr-ion irradiation. The superconductivity of the HEA films is more than 1000 times more resistant to displacement damage than that of other promising superconductors with technological applications, such as MgB2, Nb3Sn, Fe-based superconductors, and high-Tc cuprate superconductors. These results demonstrate that HEA superconductors have considerable potential for use under extreme conditions, such as in aerospace applications, nuclear fusion reactors, and high-field SC magnets.

Suggested Citation

  • Soon-Gil Jung & Yoonseok Han & Jin Hee Kim & Rahmatul Hidayati & Jong-Soo Rhyee & Jung Min Lee & Won Nam Kang & Woo Seok Choi & Hye-Ran Jeon & Jaekwon Suk & Tuson Park, 2022. "High critical current density and high-tolerance superconductivity in high-entropy alloy thin films," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30912-5
    DOI: 10.1038/s41467-022-30912-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30912-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30912-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Larbalestier & Alex Gurevich & D. Matthew Feldmann & Anatoly Polyanskii, 2001. "High-Tc superconducting materials for electric power applications," Nature, Nature, vol. 414(6861), pages 368-377, November.
    2. Shuai Chen & Zachary H. Aitken & Subrahmanyam Pattamatta & Zhaoxuan Wu & Zhi Gen Yu & David J. Srolovitz & Peter K. Liaw & Yong-Wei Zhang, 2021. "Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Jiahui & Qiu, Ming & Wei, Bin & Zhang, Hongjie & Lai, Xiaokang & Yuan, Weijia, 2013. "Design, dynamic simulation and construction of a hybrid HTS SMES (high-temperature superconducting magnetic energy storage systems) for Chinese power grid," Energy, Elsevier, vol. 51(C), pages 184-192.
    2. Yuan Tang & Wei Guo & Hiromichi Kobayashi & Satoshi Yui & Makoto Tsubota & Toshiaki Kanai, 2023. "Imaging quantized vortex rings in superfluid helium to evaluate quantum dissipation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Dong, Fangliang & Huang, Zhen & Xu, Xiaoyong & Hao, Luning & Shao, Nan & Jin, Zhijian, 2020. "Improvement of magnetic and cryogenic energy preservation performances in a feeding-power-free superconducting magnet system for maglevs," Energy, Elsevier, vol. 190(C).
    4. Fumiya Sekiguchi & Hideki Narita & Hideki Hirori & Teruo Ono & Yoshihiko Kanemitsu, 2024. "Anomalous behavior of critical current in a superconducting film triggered by DC plus terahertz current," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Shuya Zhu & Dingshun Yan & Yong Zhang & Liuliu Han & Dierk Raabe & Zhiming Li, 2024. "Strong and ductile Resinvar alloys with temperature- and time-independent resistivity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Li, Canbing & Chen, Dawei & Liu, Xubin & Shahidehpour, Mohammad & Yang, Hanyu & Liu, Hui & Huang, Wentao & Wang, Jianxiao & Deng, Xiang & Zhang, Qiying, 2024. "Fault mitigation mechanism to pave the way to accommodate over 90% renewable energy in electric power systems," Applied Energy, Elsevier, vol. 359(C).
    7. Vito Coviello & Denis Badocco & Paolo Pastore & Martina Fracchia & Paolo Ghigna & Alessandro Martucci & Daniel Forrer & Vincenzo Amendola, 2024. "Accurate prediction of the optical properties of nanoalloys with both plasmonic and magnetic elements," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Cheng-Hsien Yeh & Wen-Dung Hsu & Bernard Haochih Liu & Chan-Shan Yang & Chen-Yun Kuan & Yuan-Chun Chang & Kai-Sheng Huang & Song-Syun Jhang & Chia-Yen Lu & Peter K. Liaw & Chuan-Feng Shih, 2024. "Low-frequency conductivity of low wear high-entropy alloys," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30912-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.