IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30732-7.html
   My bibliography  Save this article

Evidence for 4e charge of Cooper quartets in a biased multi-terminal graphene-based Josephson junction

Author

Listed:
  • Ko-Fan Huang

    (Harvard University)

  • Yuval Ronen

    (Harvard University)

  • Régis Mélin

    (Université Grenoble—Alpes, CNRS, Grenoble INP, Institut NEEL)

  • Denis Feinberg

    (Université Grenoble—Alpes, CNRS, Grenoble INP, Institut NEEL)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Philip Kim

    (Harvard University
    Harvard University)

Abstract

In a Josephson junction (JJ) at zero bias, Cooper pairs are transported between two superconducting contacts via the Andreev bound states (ABSs) formed in the Josephson channel. Extending JJs to multiple superconducting contacts, the ABSs in the Josephson channel can coherently hybridize Cooper pairs among different superconducting electrodes. Biasing three-terminal JJs with antisymmetric voltages, for example, results in a direct current (DC) of Cooper quartet (CQ), which involves a four-fermion entanglement. Here, we report half a flux periodicity in the interference of CQ formed in graphene based multi-terminal (MT) JJs with a magnetic flux loop. We observe that the quartet differential conductance associated with supercurrent exhibits magneto-oscillations associated with a charge of 4e, thereby presenting evidence for interference between different CQ processes. The CQ critical current shows non-monotonic bias dependent behavior, which can be modeled by transitions between Floquet-ABSs. Our experimental observation for voltage-tunable non-equilibrium CQ-ABS in flux-loop-JJs significantly extends our understanding of MT-JJs, enabling future design of topologically unique ABS spectrum.

Suggested Citation

  • Ko-Fan Huang & Yuval Ronen & Régis Mélin & Denis Feinberg & Kenji Watanabe & Takashi Taniguchi & Philip Kim, 2022. "Evidence for 4e charge of Cooper quartets in a biased multi-terminal graphene-based Josephson junction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30732-7
    DOI: 10.1038/s41467-022-30732-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30732-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30732-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hubert B. Heersche & Pablo Jarillo-Herrero & Jeroen B. Oostinga & Lieven M. K. Vandersypen & Alberto F. Morpurgo, 2007. "Bipolar supercurrent in graphene," Nature, Nature, vol. 446(7131), pages 56-59, March.
    2. Roman-Pascal Riwar & Manuel Houzet & Julia S. Meyer & Yuli V. Nazarov, 2016. "Multi-terminal Josephson junctions as topological matter," Nature Communications, Nature, vol. 7(1), pages 1-5, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Coraiola & Daniel Z. Haxell & Deividas Sabonis & Hannes Weisbrich & Aleksandr E. Svetogorov & Manuel Hinderling & Sofieke C. Kate & Erik Cheah & Filip Krizek & Rüdiger Schott & Werner Wegscheide, 2023. "Phase-engineering the Andreev band structure of a three-terminal Josephson junction," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Gino V. Graziano & Mohit Gupta & Mihir Pendharkar & Jason T. Dong & Connor P. Dempsey & Chris Palmstrøm & Vlad S. Pribiag, 2022. "Selective control of conductance modes in multi-terminal Josephson junctions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Coraiola & Daniel Z. Haxell & Deividas Sabonis & Hannes Weisbrich & Aleksandr E. Svetogorov & Manuel Hinderling & Sofieke C. Kate & Erik Cheah & Filip Krizek & Rüdiger Schott & Werner Wegscheide, 2023. "Phase-engineering the Andreev band structure of a three-terminal Josephson junction," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Gino V. Graziano & Mohit Gupta & Mihir Pendharkar & Jason T. Dong & Connor P. Dempsey & Chris Palmstrøm & Vlad S. Pribiag, 2022. "Selective control of conductance modes in multi-terminal Josephson junctions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Prasanna Rout & Nikos Papadopoulos & Fernando Peñaranda & Kenji Watanabe & Takashi Taniguchi & Elsa Prada & Pablo San-Jose & Srijit Goswami, 2024. "Supercurrent mediated by helical edge modes in bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Mohit Gupta & Gino V. Graziano & Mihir Pendharkar & Jason T. Dong & Connor P. Dempsey & Chris Palmstrøm & Vlad S. Pribiag, 2023. "Gate-tunable superconducting diode effect in a three-terminal Josephson device," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Nikhil Tilak & Michael Altvater & Sheng-Hsiung Hung & Choong-Jae Won & Guohong Li & Taha Kaleem & Sang-Wook Cheong & Chung-Hou Chung & Horng-Tay Jeng & Eva Y. Andrei, 2024. "Proximity induced charge density wave in a graphene/1T-TaS2 heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Tao Xu & Wei Sun & Shaowei Lu & Ke-ming Ma & Xiaoqiang Wang, 2019. "The real-time elderly fall posture identifying scheme with wearable sensors," International Journal of Distributed Sensor Networks, , vol. 15(11), pages 15501477198, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30732-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.