IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30488-0.html
   My bibliography  Save this article

Topography-induced large-scale antiparallel collective migration in vascular endothelium

Author

Listed:
  • Claire Leclech

    (LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris)

  • David Gonzalez-Rodriguez

    (Université de Lorraine, LCP-A2MC)

  • Aurélien Villedieu

    (Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology)

  • Thévy Lok

    (LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris)

  • Anne-Marie Déplanche

    (Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004)

  • Abdul I. Barakat

    (LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris)

Abstract

Collective migration of vascular endothelial cells is central for embryonic development, angiogenesis, and wound closure. Although physical confinement of cell assemblies has been shown to elicit specific patterns of collective movement in various cell types, endothelial migration in vivo often occurs without confinement. Here we show that unconfined endothelial cell monolayers on microgroove substrates that mimic the anisotropic organization of the extracellular matrix exhibit a specific type of collective movement that takes the form of a periodic pattern of antiparallel cell streams. We further establish that the development of these streams requires intact cell-cell junctions and that stream sizes are particularly sensitive to groove depth. Finally, we show that modeling the endothelial cell sheet as an active fluid with the microgrooves acting as constraints on cell orientation predicts the occurrence of the periodic antiparallel cell streams as well as their lengths and widths. We posit that in unconfined cell assemblies, physical factors that constrain or bias cellular orientation such as anisotropic extracellular matrix cues or directed flow-derived shear forces dictate the pattern of collective cell movement.

Suggested Citation

  • Claire Leclech & David Gonzalez-Rodriguez & Aurélien Villedieu & Thévy Lok & Anne-Marie Déplanche & Abdul I. Barakat, 2022. "Topography-induced large-scale antiparallel collective migration in vascular endothelium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30488-0
    DOI: 10.1038/s41467-022-30488-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30488-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30488-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kyogo Kawaguchi & Ryoichiro Kageyama & Masaki Sano, 2017. "Topological defects control collective dynamics in neural progenitor cell cultures," Nature, Nature, vol. 545(7654), pages 327-331, May.
    2. Fabrizio Orsenigo & Costanza Giampietro & Aldo Ferrari & Monica Corada & Ariane Galaup & Sara Sigismund & Giuseppe Ristagno & Luigi Maddaluno & Gou Young Koh & Davide Franco & Vartan Kurtcuoglu & Dimo, 2012. "Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo," Nature Communications, Nature, vol. 3(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun-Shui Pan & Ying-Hua Liu & Yu-Ying Liu & Yu Zhang & Ke He & Xiao-Yuan Yang & Bai-He Hu & Xin Chang & Ming-Xia Wang & Xiao-Hong Wei & Jing-Yu Fan & Xin-Min Wu & Jing-Yan Han, 2015. "Salvianolic Acid B Ameliorates Lipopolysaccharide-Induced Albumin Leakage from Rat Mesenteric Venules through Src-Regulated Transcelluar Pathway and Paracellular Pathway," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-14, May.
    2. Noemi Gioelli & Lisa J. Neilson & Na Wei & Giulia Villari & Wenqian Chen & Bernhard Kuhle & Manuel Ehling & Federica Maione & Sander Willox & Serena Brundu & Daniele Avanzato & Grigorios Koulouras & M, 2022. "Neuropilin 1 and its inhibitory ligand mini-tryptophanyl-tRNA synthetase inversely regulate VE-cadherin turnover and vascular permeability," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Gopal Chovatiya & Kefei Nina Li & Jonathan Li & Sangeeta Ghuwalewala & Tudorita Tumbar, 2023. "Alk1 acts in non-endothelial VE-cadherin+ perineurial cells to maintain nerve branching during hair homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Yingwei Wang & Qi Li & Jupeng Zhao & Jiamin Chen & Dongxue Wu & Youling Zheng & Jiaxin Wu & Jie Liu & Jianlong Lu & Jianhua Zhang & Zheng Wu, 2023. "Mechanically induced pyroptosis enhances cardiosphere oxidative stress resistance and metabolism for myocardial infarction therapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Chinnaswamy Tiruppathi & Dong-Mei Wang & Mohammad Owais Ansari & Shabana Bano & Yoshikazu Tsukasaki & Amitabha Mukhopadhyay & Jagdish C. Joshi & Christian Loch & Hans W. M. Niessen & Asrar B. Malik, 2023. "Ubiquitin ligase CHFR mediated degradation of VE-cadherin through ubiquitylation disrupts endothelial adherens junctions," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Julia Eckert & Benoît Ladoux & René-Marc Mège & Luca Giomi & Thomas Schmidt, 2023. "Hexanematic crossover in epithelial monolayers depends on cell adhesion and cell density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30488-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.