IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30381-w.html
   My bibliography  Save this article

High capacity topological coding based on nested vortex knots and links

Author

Listed:
  • Ling-Jun Kong

    (Beijing Institute of Technology)

  • Weixuan Zhang

    (Beijing Institute of Technology)

  • Peng Li

    (Northwestern Polytechnical University)

  • Xuyue Guo

    (Northwestern Polytechnical University)

  • Jingfeng Zhang

    (Beijing Institute of Technology)

  • Furong Zhang

    (Beijing Institute of Technology)

  • Jianlin Zhao

    (Northwestern Polytechnical University)

  • Xiangdong Zhang

    (Beijing Institute of Technology)

Abstract

Optical knots and links have attracted great attention because of their exotic topological characteristics. Recent investigations have shown that the information encoding based on optical knots could possess robust features against external perturbations. However, as a superior coding scheme, it is also necessary to achieve a high capacity, which is hard to be fulfilled by existing knot-carriers owing to the limit number of associated topological invariants. Thus, how to realize the knot-based information coding with a high capacity is a key problem to be solved. Here, we create a type of nested vortex knot, and show that it can be used to fulfill the robust information coding with a high capacity assisted by a large number of intrinsic topological invariants. In experiments, we design and fabricate metasurface holograms to generate light fields sustaining different kinds of nested vortex links. Furthermore, we verify the feasibility of the high-capacity coding scheme based on those topological optical knots. Our work opens another way to realize the robust and high-capacity optical coding, which may have useful impacts on the field of information transfer and storage.

Suggested Citation

  • Ling-Jun Kong & Weixuan Zhang & Peng Li & Xuyue Guo & Jingfeng Zhang & Furong Zhang & Jianlin Zhao & Xiangdong Zhang, 2022. "High capacity topological coding based on nested vortex knots and links," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30381-w
    DOI: 10.1038/s41467-022-30381-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30381-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30381-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sören Wengerowsky & Siddarth Koduru Joshi & Fabian Steinlechner & Hannes Hübel & Rupert Ursin, 2018. "An entanglement-based wavelength-multiplexed quantum communication network," Nature, Nature, vol. 564(7735), pages 225-228, December.
    2. Weimin Ye & Franziska Zeuner & Xin Li & Bernhard Reineke & Shan He & Cheng-Wei Qiu & Juan Liu & Yongtian Wang & Shuang Zhang & Thomas Zentgraf, 2016. "Spin and wavelength multiplexed nonlinear metasurface holography," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
    3. Hongkuan Zhang & Weixuan Zhang & Yunhong Liao & Xiaoming Zhou & Junfei Li & Gengkai Hu & Xiangdong Zhang, 2020. "Creation of acoustic vortex knots," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    4. David A. Leigh & Fredrik Schaufelberger & Lucian Pirvu & Joakim Halldin Stenlid & David P. August & Julien Segard, 2020. "Tying different knots in a molecular strand," Nature, Nature, vol. 584(7822), pages 562-568, August.
    5. Rajesh Kumar Sharma & Ishita Agrawal & Liang Dai & Patrick S. Doyle & Slaven Garaj, 2019. "Complex DNA knots detected with a nanopore sensor," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Hugo Larocque & Alessio D’Errico & Manuel F. Ferrer-Garcia & Avishy Carmi & Eliahu Cohen & Ebrahim Karimi, 2020. "Optical framed knots as information carriers," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerardo Patiño-Guillén & Jovan Pešović & Marko Panić & Dušanka Savić-Pavićević & Filip Bošković & Ulrich Felix Keyser, 2024. "Single-molecule RNA sizing enables quantitative analysis of alternative transcription termination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Lauren S. Lastra & Y. M. Nuwan D. Y. Bandara & Michelle Nguyen & Nasim Farajpour & Kevin J. Freedman, 2022. "On the origins of conductive pulse sensing inside a nanopore," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Zhipeng Yu & Huanhao Li & Wannian Zhao & Po-Sheng Huang & Yu-Tsung Lin & Jing Yao & Wenzhao Li & Qi Zhao & Pin Chieh Wu & Bo Li & Patrice Genevet & Qinghua Song & Puxiang Lai, 2024. "High-security learning-based optical encryption assisted by disordered metasurface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Jiyuan Zheng & Xingjun Xue & Cheng Ji & Yuan Yuan & Keye Sun & Daniel Rosenmann & Lai Wang & Jiamin Wu & Joe C. Campbell & Supratik Guha, 2022. "Dynamic-quenching of a single-photon avalanche photodetector using an adaptive resistive switch," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Pengcheng Chen & Xiaoyi Xu & Tianxin Wang & Chao Zhou & Dunzhao Wei & Jianan Ma & Junjie Guo & Xuejing Cui & Xiaoyan Cheng & Chenzhu Xie & Shuang Zhang & Shining Zhu & Min Xiao & Yong Zhang, 2023. "Laser nanoprinting of 3D nonlinear holograms beyond 25000 pixels-per-inch for inter-wavelength-band information processing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Jiaqi Liang & Shuai Lu & Yang Yang & Yun-Jia Shen & Jin-Ku Bai & Xin Sun & Xu-Lang Chen & Jie Cui & Ai-Jiao Guan & Jun-Feng Xiang & Xiaopeng Li & Heng Wang & Yu-Dong Yang & Han-Yuan Gong, 2023. "Thermally-induced atropisomerism promotes metal-organic cage construction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Yoon Ho Lee & Yousang Won & Jungho Mun & Sanghyuk Lee & Yeseul Kim & Bongjun Yeom & Letian Dou & Junsuk Rho & Joon Hak Oh, 2023. "Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Zhiyu Qu & Jing Fang & Yu-Xiang Wang & Yibin Sun & Yajie Liu & Wen-Hao Wu & Wen-Bin Zhang, 2023. "A single-domain green fluorescent protein catenane," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Zhiwen Li & Jingjing Zhang & Gao Li & Richard J. Puddephatt, 2024. "Self-assembly of the smallest and tightest molecular trefoil knot," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    10. Sebastian Philipp Neumann & Alexander Buchner & Lukas Bulla & Martin Bohmann & Rupert Ursin, 2022. "Continuous entanglement distribution over a transnational 248 km fiber link," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Jing Wang & Deshan Liang & Jing Ma & Yuanyuan Fan & Ji Ma & Hasnain Mehdi Jafri & Huayu Yang & Qinghua Zhang & Yue Wang & Changqing Guo & Shouzhe Dong & Di Liu & Xueyun Wang & Jiawang Hong & Nan Zhang, 2023. "Polar Solomon rings in ferroelectric nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30381-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.