IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12358-4.html
   My bibliography  Save this article

Complex DNA knots detected with a nanopore sensor

Author

Listed:
  • Rajesh Kumar Sharma

    (National University of Singapore
    Singapore-MIT Alliance for Research and Technology Centre
    National University of Singapore)

  • Ishita Agrawal

    (National University of Singapore)

  • Liang Dai

    (City University of Hong Kong)

  • Patrick S. Doyle

    (Singapore-MIT Alliance for Research and Technology Centre
    Massachusetts Institute of Technology)

  • Slaven Garaj

    (National University of Singapore
    National University of Singapore
    National University of Singapore)

Abstract

Equilibrium knots are common in biological polymers—their prevalence, size distribution, structure, and dynamics have been extensively studied, with implications to fundamental biological processes and DNA sequencing technologies. Nanopore microscopy is a high-throughput single-molecule technique capable of detecting the shape of biopolymers, including DNA knots. Here we demonstrate nanopore sensors that map the equilibrium structure of DNA knots, without spurious knot tightening and sliding. We show the occurrence of both tight and loose knots, reconciling previous contradictory results from different experimental techniques. We evidence the occurrence of two quantitatively different modes of knot translocation through the nanopores, involving very different tension forces. With large statistics, we explore the complex knots and, for the first time, reveal the existence of rare composite knots. We use parametrized complexity, in concert with simulations, to test the theoretical assumptions of the models, further asserting the relevance of nanopores in future investigation of knots.

Suggested Citation

  • Rajesh Kumar Sharma & Ishita Agrawal & Liang Dai & Patrick S. Doyle & Slaven Garaj, 2019. "Complex DNA knots detected with a nanopore sensor," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12358-4
    DOI: 10.1038/s41467-019-12358-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12358-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12358-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerardo Patiño-Guillén & Jovan Pešović & Marko Panić & Dušanka Savić-Pavićević & Filip Bošković & Ulrich Felix Keyser, 2024. "Single-molecule RNA sizing enables quantitative analysis of alternative transcription termination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Ling-Jun Kong & Weixuan Zhang & Peng Li & Xuyue Guo & Jingfeng Zhang & Furong Zhang & Jianlin Zhao & Xiangdong Zhang, 2022. "High capacity topological coding based on nested vortex knots and links," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Lauren S. Lastra & Y. M. Nuwan D. Y. Bandara & Michelle Nguyen & Nasim Farajpour & Kevin J. Freedman, 2022. "On the origins of conductive pulse sensing inside a nanopore," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12358-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.