IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29963-5.html
   My bibliography  Save this article

ASCL1 activates neuronal stem cell-like lineage programming through remodeling of the chromatin landscape in prostate cancer

Author

Listed:
  • Shaghayegh Nouruzi

    (University of British Columbia
    Vancouver Prostate Centre)

  • Dwaipayan Ganguli

    (Vancouver Prostate Centre)

  • Nakisa Tabrizian

    (University of British Columbia
    Vancouver Prostate Centre)

  • Maxim Kobelev

    (University of British Columbia
    Vancouver Prostate Centre)

  • Olena Sivak

    (Vancouver Prostate Centre)

  • Takeshi Namekawa

    (University of British Columbia
    Vancouver Prostate Centre)

  • Daksh Thaper

    (University of British Columbia
    Vancouver Prostate Centre)

  • Sylvan C. Baca

    (Dana-Farber Cancer Institute)

  • Matthew L. Freedman

    (Dana-Farber Cancer Institute)

  • Adeleke Aguda

    (Vancouver Prostate Centre)

  • Alastair Davies

    (University of British Columbia
    Vancouver Prostate Centre)

  • Amina Zoubeidi

    (University of British Columbia
    Vancouver Prostate Centre)

Abstract

Treatment with androgen receptor pathway inhibitors (ARPIs) in prostate cancer leads to the emergence of resistant tumors characterized by lineage plasticity and differentiation toward neuroendocrine lineage. Here, we find that ARPIs induce a rapid epigenetic alteration mediated by large-scale chromatin remodeling to support activation of stem/neuronal transcriptional programs. We identify the proneuronal transcription factor ASCL1 motif to be enriched in hyper-accessible regions. ASCL1 acts as a driver of the lineage plastic, neuronal transcriptional program to support treatment resistance and neuroendocrine phenotype. Targeting ASCL1 switches the neuroendocrine lineage back to the luminal epithelial state. This effect is modulated by disruption of the polycomb repressive complex-2 through UHRF1/AMPK axis and change the chromatin architecture in favor of luminal phenotype. Our study provides insights into the epigenetic alterations induced by ARPIs, governed by ASCL1, provides a proof of principle of targeting ASCL1 to reverse neuroendocrine phenotype, support luminal conversion and re-addiction to ARPIs.

Suggested Citation

  • Shaghayegh Nouruzi & Dwaipayan Ganguli & Nakisa Tabrizian & Maxim Kobelev & Olena Sivak & Takeshi Namekawa & Daksh Thaper & Sylvan C. Baca & Matthew L. Freedman & Adeleke Aguda & Alastair Davies & Ami, 2022. "ASCL1 activates neuronal stem cell-like lineage programming through remodeling of the chromatin landscape in prostate cancer," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29963-5
    DOI: 10.1038/s41467-022-29963-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29963-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29963-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xi Chen & Ricardo J. Miragaia & Kedar Nath Natarajan & Sarah A. Teichmann, 2018. "A rapid and robust method for single cell chromatin accessibility profiling," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Paloma Cejas & Yingtian Xie & Alba Font-Tello & Klothilda Lim & Sudeepa Syamala & Xintao Qiu & Alok K. Tewari & Neel Shah & Holly M. Nguyen & Radhika A. Patel & Lisha Brown & Ilsa Coleman & Wenzel M. , 2021. "Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Nicholas J. Brady & Alyssa M. Bagadion & Richa Singh & Vincenza Conteduca & Lucie Van Emmenis & Elisa Arceci & Hubert Pakula & Ryan Carelli & Francesca Khani & Martin Bakht & Michael Sigouros & Rohan , 2021. "Temporal evolution of cellular heterogeneity during the progression to advanced AR-negative prostate cancer," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goutam Chakraborty & Kasmira Gupta & Natasha Kyprianou, 2023. "Epigenetic mechanisms underlying subtype heterogeneity and tumor recurrence in prostate cancer," Nature Communications, Nature, vol. 14(1), pages 1-4, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Rodríguez-Ubreva & Anna Arutyunyan & Marc Jan Bonder & Lucía Del Pino-Molina & Stephen J. Clark & Carlos de la Calle-Fabregat & Luz Garcia-Alonso & Louis-François Handfield & Laura Ciudad & Edu, 2022. "Single-cell Atlas of common variable immunodeficiency shows germinal center-associated epigenetic dysregulation in B-cell responses," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Maria Stahl Madsen & Marjoleine F. Broekema & Martin Rønn Madsen & Arjen Koppen & Anouska Borgman & Cathrin Gräwe & Elisabeth G. K. Thomsen & Denise Westland & Mariette E. G. Kranendonk & Marian Groot, 2022. "PPARγ lipodystrophy mutants reveal intermolecular interactions required for enhancer activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Ziqi Zhang & Haoran Sun & Ragunathan Mariappan & Xi Chen & Xinyu Chen & Mika S. Jain & Mirjana Efremova & Sarah A. Teichmann & Vaibhav Rajan & Xiuwei Zhang, 2023. "scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Sukanya Panja & Mihai Ioan Truica & Christina Y. Yu & Vamshi Saggurthi & Michael W. Craige & Katie Whitehead & Mayra V. Tuiche & Aymen Al-Saadi & Riddhi Vyas & Shridar Ganesan & Suril Gohel & Frederic, 2024. "Mechanism-centric regulatory network identifies NME2 and MYC programs as markers of Enzalutamide resistance in CRPC," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    5. Varadha Balaji Venkadakrishnan & Adam G. Presser & Richa Singh & Matthew A. Booker & Nicole A. Traphagen & Kenny Weng & Nathaniel C. E. Voss & Navin R. Mahadevan & Kei Mizuno & Loredana Puca & Osasena, 2024. "Lineage-specific canonical and non-canonical activity of EZH2 in advanced prostate cancer subtypes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Kai Cao & Qiyu Gong & Yiguang Hong & Lin Wan, 2022. "A unified computational framework for single-cell data integration with optimal transport," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Thomas C. Westbrook & Xiangnan Guan & Eva Rodansky & Diana Flores & Chia Jen Liu & Aaron M. Udager & Radhika A. Patel & Michael C. Haffner & Ya-Mei Hu & Duanchen Sun & Tomasz M. Beer & Adam Foye & Rah, 2022. "Transcriptional profiling of matched patient biopsies clarifies molecular determinants of enzalutamide-induced lineage plasticity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Goutam Chakraborty & Kasmira Gupta & Natasha Kyprianou, 2023. "Epigenetic mechanisms underlying subtype heterogeneity and tumor recurrence in prostate cancer," Nature Communications, Nature, vol. 14(1), pages 1-4, December.
    9. Alessia Cacciatore & Dheeraj Shinde & Carola Musumeci & Giada Sandrini & Luca Guarrera & Domenico Albino & Gianluca Civenni & Elisa Storelli & Simone Mosole & Elisa Federici & Alessio Fusina & Marta I, 2024. "Epigenome-wide impact of MAT2A sustains the androgen-indifferent state and confers synthetic vulnerability in ERG fusion-positive prostate cancer," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    10. Jules Samaran & Gabriel Peyré & Laura Cantini, 2024. "scConfluence: single-cell diagonal integration with regularized Inverse Optimal Transport on weakly connected features," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Hubert Pakula & Mohamed Omar & Ryan Carelli & Filippo Pederzoli & Giuseppe Nicolò Fanelli & Tania Pannellini & Fabio Socciarelli & Lucie Van Emmenis & Silvia Rodrigues & Caroline Fidalgo-Ribeiro & Pie, 2024. "Distinct mesenchymal cell states mediate prostate cancer progression," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29963-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.