IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29919-9.html
   My bibliography  Save this article

Evolution of the murine gut resistome following broad-spectrum antibiotic treatment

Author

Listed:
  • Laura Nies

    (University of Luxembourg)

  • Susheel Bhanu Busi

    (University of Luxembourg)

  • Mina Tsenkova

    (University of Luxembourg)

  • Rashi Halder

    (University of Luxembourg)

  • Elisabeth Letellier

    (University of Luxembourg)

  • Paul Wilmes

    (University of Luxembourg
    University of Luxembourg)

Abstract

The emergence and spread of antimicrobial resistance (AMR) represent an ever-growing healthcare challenge worldwide. Nevertheless, the mechanisms and timescales shaping this resistome remain elusive. Using an antibiotic cocktail administered to a murine model along with a longitudinal sampling strategy, we identify the mechanisms by which gut commensals acquire antimicrobial resistance genes (ARGs) after a single antibiotic course. While most of the resident bacterial populations are depleted due to the treatment, Akkermansia muciniphila and members of the Enterobacteriaceae, Enterococcaceae, and Lactobacillaceae families acquire resistance and remain recalcitrant. We identify specific genes conferring resistance against the antibiotics in the corresponding metagenome-assembled genomes (MAGs) and trace their origins within each genome. Here we show that, while mobile genetic elements (MGEs), including bacteriophages and plasmids, contribute to the spread of ARGs, integrons represent key factors mediating AMR in the antibiotic-treated mice. Our findings suggest that a single course of antibiotics alone may act as the selective sweep driving ARG acquisition and incidence in gut commensals over a single mammalian lifespan.

Suggested Citation

  • Laura Nies & Susheel Bhanu Busi & Mina Tsenkova & Rashi Halder & Elisabeth Letellier & Paul Wilmes, 2022. "Evolution of the murine gut resistome following broad-spectrum antibiotic treatment," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29919-9
    DOI: 10.1038/s41467-022-29919-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29919-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29919-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yongfei Hu & Xi Yang & Junjie Qin & Na Lu & Gong Cheng & Na Wu & Yuanlong Pan & Jing Li & Liying Zhu & Xin Wang & Zhiqi Meng & Fangqing Zhao & Di Liu & Juncai Ma & Nan Qin & Chunsheng Xiang & Yonghong, 2013. "Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    2. Alessio Milanese & Daniel R Mende & Lucas Paoli & Guillem Salazar & Hans-Joachim Ruscheweyh & Miguelangel Cuenca & Pascal Hingamp & Renato Alves & Paul I Costea & Luis Pedro Coelho & Thomas S. B. Schm, 2019. "Microbial abundance, activity and population genomic profiling with mOTUs2," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Linda Wampach & Anna Heintz-Buschart & Joëlle V. Fritz & Javier Ramiro-Garcia & Janine Habier & Malte Herold & Shaman Narayanasamy & Anne Kaysen & Angela H. Hogan & Lutz Bindl & Jean Bottu & Rashi Hal, 2018. "Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    4. Elizabeth J. Culp & Nicholas Waglechner & Wenliang Wang & Aline A. Fiebig-Comyn & Yen-Pang Hsu & Kalinka Koteva & David Sychantha & Brian K. Coombes & Michael S. Nieuwenhze & Yves V. Brun & Gerard D. , 2020. "Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling," Nature, Nature, vol. 578(7796), pages 582-587, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerstin Thriene & Karin B. Michels, 2023. "Human Gut Microbiota Plasticity throughout the Life Course," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    2. Victoria T. Chu & Alexandra Tsitsiklis & Eran Mick & Lilliam Ambroggio & Katrina L. Kalantar & Abigail Glascock & Christina M. Osborne & Brandie D. Wagner & Michael A. Matthay & Joseph L. DeRisi & Car, 2024. "The antibiotic resistance reservoir of the lung microbiome expands with age in a population of critically ill patients," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Corentin Hochart & Lucas Paoli & Hans-Joachim Ruscheweyh & Guillem Salazar & Emilie Boissin & Sarah Romac & Julie Poulain & Guillaume Bourdin & Guillaume Iwankow & Clémentine Moulin & Maren Ziegler & , 2023. "Ecology of Endozoicomonadaceae in three coral genera across the Pacific Ocean," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Trine Zachariasen & Jakob Russel & Charisse Petersen & Gisle A. Vestergaard & Shiraz Shah & Pablo Atienza Lopez & Moschoula Passali & Stuart E. Turvey & Søren J. Sørensen & Ole Lund & Jakob Stokholm &, 2024. "MAGinator enables accurate profiling of de novo MAGs with strain-level phylogenies," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Xueqin Shu & Yingying Shi & Yi Huang & Dan Yu & Baolin Sun, 2023. "Transcription tuned by S-nitrosylation underlies a mechanism for Staphylococcus aureus to circumvent vancomycin killing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Zhenyan Zhang & Qi Zhang & Tingzhang Wang & Nuohan Xu & Tao Lu & Wenjie Hong & Josep Penuelas & Michael Gillings & Meixia Wang & Wenwen Gao & Haifeng Qian, 2022. "Assessment of global health risk of antibiotic resistance genes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Xuanji Li & Asker Brejnrod & Jonathan Thorsen & Trine Zachariasen & Urvish Trivedi & Jakob Russel & Gisle Alberg Vestergaard & Jakob Stokholm & Morten Arendt Rasmussen & Søren Johannes Sørensen, 2023. "Differential responses of the gut microbiome and resistome to antibiotic exposures in infants and adults," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Mathias H. Hansen & Martina Adamek & Dumitrita Iftime & Daniel Petras & Frauke Schuseil & Stephanie Grond & Evi Stegmann & Max J. Cryle & Nadine Ziemert, 2023. "Resurrecting ancestral antibiotics: unveiling the origins of modern lipid II targeting glycopeptides," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Zhuo Cheng & Bei-Bei He & Kangfan Lei & Ying Gao & Yuqi Shi & Zheng Zhong & Hongyan Liu & Runze Liu & Haili Zhang & Song Wu & Wenxuan Zhang & Xiaoyu Tang & Yong-Xin Li, 2024. "Rule-based omics mining reveals antimicrobial macrocyclic peptides against drug-resistant clinical isolates," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Eniola Sogunle & Gwinyai Masukume & Gill Nelson, 2019. "The association between caesarean section delivery and later life obesity in 21-24 year olds in an Urban South African birth cohort," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.
    11. Wan-Hong Wen & Yue Zhang & Ying-Ying Zhang & Qian Yu & Chu-Chu Jiang & Man-Cheng Tang & Jin-Yue Pu & Lian Wu & Yi-Lei Zhao & Ting Shi & Jiahai Zhou & Gong-Li Tang, 2021. "Reductive inactivation of the hemiaminal pharmacophore for resistance against tetrahydroisoquinoline antibiotics," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    12. Ernestina Hauptfeld & Nikolaos Pappas & Sandra Iwaarden & Basten L. Snoek & Andrea Aldas-Vargas & Bas E. Dutilh & F. A. Bastiaan Meijenfeldt, 2024. "Integrating taxonomic signals from MAGs and contigs improves read annotation and taxonomic profiling of metagenomes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Samuel C. Forster & Junyan Liu & Nitin Kumar & Emily L. Gulliver & Jodee A. Gould & Alejandra Escobar-Zepeda & Tapoka Mkandawire & Lindsay J. Pike & Yan Shao & Mark D. Stares & Hilary P. Browne & B. A, 2022. "Strain-level characterization of broad host range mobile genetic elements transferring antibiotic resistance from the human microbiome," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Gwinyai Masukume & Ali S Khashan & Susan M B Morton & Philip N Baker & Louise C Kenny & Fergus P McCarthy, 2019. "Caesarean section delivery and childhood obesity in a British longitudinal cohort study," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-13, October.
    15. Qian Li & Shang Chen & Kui Zhu & Xiaoluo Huang & Yucheng Huang & Zhangqi Shen & Shuangyang Ding & Danxia Gu & Qiwen Yang & Hongli Sun & Fupin Hu & Hui Wang & Jiachang Cai & Bing Ma & Rong Zhang & Jian, 2022. "Collateral sensitivity to pleuromutilins in vancomycin-resistant Enterococcus faecium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Suguru Nishijima & Naoyoshi Nagata & Yuya Kiguchi & Yasushi Kojima & Tohru Miyoshi-Akiyama & Moto Kimura & Mitsuru Ohsugi & Kohjiro Ueki & Shinichi Oka & Masashi Mizokami & Takao Itoi & Takashi Kawai , 2022. "Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Peter J. Diebold & Matthew W. Rhee & Qiaojuan Shi & Nguyen Vinh Trung & Fayaz Umrani & Sheraz Ahmed & Vandana Kulkarni & Prasad Deshpande & Mallika Alexander & Ngo Hoa & Nicholas A. Christakis & Najee, 2023. "Clinically relevant antibiotic resistance genes are linked to a limited set of taxa within gut microbiome worldwide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Andrew M. King & Daniel A. Anderson & Emerson Glassey & Thomas H. Segall-Shapiro & Zhengan Zhang & David L. Niquille & Amanda C. Embree & Katelin Pratt & Thomas L. Williams & D. Benjamin Gordon & Chri, 2021. "Selection for constrained peptides that bind to a single target protein," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29919-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.