IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29855-8.html
   My bibliography  Save this article

Vasa nucleates asymmetric translation along the mitotic spindle during unequal cell divisions

Author

Listed:
  • Ana Fernandez-Nicolas

    (Brown University)

  • Alicia Uchida

    (Brown University)

  • Jessica Poon

    (Brown University)

  • Mamiko Yajima

    (Brown University)

Abstract

mRNA translation on the spindle is hypothesized to be an essential strategy for the localized production of cell regulators. This mechanism may be important particularly in early embryonic cells, which have a large diffusion volume and that undergo rapid cell divisions. Evidence to test such a hypothesis has been, however, limited. Here, we use an embryo with both symmetric and asymmetric cell divisions and manipulate Vasa protein, an RNA-helicase, on the spindle in live sea urchin embryos. We learned that the spindle serves as a major site of translation and that protein synthesis within a single spindle can be unequal and help drive asymmetric cell divisions during embryogenesis. Recruiting Vasa to the ectopic sub-cellular region induced a new site of translation, disturbed asymmetric translation on the spindle, and changed the cell fate. Based on these observations, we conclude that Vasa functions in localized translation, which provides a spatiotemporal control in protein synthesis and is essential for rapidly developing embryonic cells.

Suggested Citation

  • Ana Fernandez-Nicolas & Alicia Uchida & Jessica Poon & Mamiko Yajima, 2022. "Vasa nucleates asymmetric translation along the mitotic spindle during unequal cell divisions," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29855-8
    DOI: 10.1038/s41467-022-29855-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29855-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29855-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Petra van Bergeijk & Max Adrian & Casper C. Hoogenraad & Lukas C. Kapitein, 2015. "Optogenetic control of organelle transport and positioning," Nature, Nature, vol. 518(7537), pages 111-114, February.
    2. Xiaoqun Wang & Jin-Wu Tsai & Janice H. Imai & Wei-Nan Lian & Richard B. Vallee & Song-Hai Shi, 2009. "Asymmetric centrosome inheritance maintains neural progenitors in the neocortex," Nature, Nature, vol. 461(7266), pages 947-955, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaofeng Sun & Chengjian Zhou & Simin Xia & Xi Chen, 2023. "Small molecule-nanobody conjugate induced proximity controls intracellular processes and modulates endogenous unligandable targets," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Bernardo P de Almeida & André F Vieira & Joana Paredes & Mónica Bettencourt-Dias & Nuno L Barbosa-Morais, 2019. "Pan-cancer association of a centrosome amplification gene expression signature with genomic alterations and clinical outcome," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-31, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29855-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.