IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29821-4.html
   My bibliography  Save this article

Extra plasticity governed by shear band deflection in gradient metallic glasses

Author

Listed:
  • Yao Tang

    (Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Haofei Zhou

    (Zhejiang University
    Zhejiang University)

  • Haiming Lu

    (Zhejiang University)

  • Xiaodong Wang

    (Zhejiang University
    Zhejiang University)

  • Qingping Cao

    (Zhejiang University
    Zhejiang University)

  • Dongxian Zhang

    (Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Wei Yang

    (Zhejiang University)

  • Jian-Zhong Jiang

    (Zhejiang University
    Zhejiang University)

Abstract

Inspired by gradient materials in nature, advanced engineering components with controlled structural gradients have attracted substantial research interests due to their exceptional combinations of properties. However, it remains challenging to generate structural gradients that penetrate through bulk materials, which is essential for achieving enhanced mechanical properties in metallic materials. Here, we report practical strategies to design controllable structural gradients in bulk metallic glasses (BMGs). By adjusting processing conditions, including holding time and/or controlling temperatures, of cryogenic thermal cycling and fast cooling, two different types of gradient metallic glasses (GMGs) with spatially gradient-distributed free volume contents can be synthesized. Both mechanical testing and atomistic simulations demonstrate that the spatial gradient can endow GMGs with extra plasticity. Such an enhanced mechanical property is governed by the gradient-induced deflection of shear deformation that fundamentally suppresses the unlimited shear localization on a straight plane that would be expected in BMGs without such a gradient.

Suggested Citation

  • Yao Tang & Haofei Zhou & Haiming Lu & Xiaodong Wang & Qingping Cao & Dongxian Zhang & Wei Yang & Jian-Zhong Jiang, 2022. "Extra plasticity governed by shear band deflection in gradient metallic glasses," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29821-4
    DOI: 10.1038/s41467-022-29821-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29821-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29821-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. V. Ketov & Y. H. Sun & S. Nachum & Z. Lu & A. Checchi & A. R. Beraldin & H. Y. Bai & W. H. Wang & D. V. Louzguine-Luzgin & M. A. Carpenter & A. L. Greer, 2015. "Rejuvenation of metallic glasses by non-affine thermal strain," Nature, Nature, vol. 524(7564), pages 200-203, August.
    2. Yujie Wei & Yongqiang Li & Lianchun Zhu & Yao Liu & Xianqi Lei & Gang Wang & Yanxin Wu & Zhenli Mi & Jiabin Liu & Hongtao Wang & Huajian Gao, 2014. "Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hengwei Luan & Xin Zhang & Hongyu Ding & Fei Zhang & J. H. Luan & Z. B. Jiao & Yi-Chieh Yang & Hengtong Bu & Ranbin Wang & Jialun Gu & Chunlin Shao & Qing Yu & Yang Shao & Qiaoshi Zeng & Na Chen & C. , 2022. "High-entropy induced a glass-to-glass transition in a metallic glass," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yang Yang & Sheng Yin & Qin Yu & Yingxin Zhu & Jun Ding & Ruopeng Zhang & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2024. "Rejuvenation as the origin of planar defects in the CrCoNi medium entropy alloy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Yuan Wu & Di Cao & Yilin Yao & Guosheng Zhang & Jinyue Wang & Leqing Liu & Fengshou Li & Huiyang Fan & Xiongjun Liu & Hui Wang & Xianzhen Wang & Huihui Zhu & Suihe Jiang & Paraskevas Kontis & Dierk Ra, 2021. "Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Cun Chen & Shaokang Guan & Liying Zhang, 2018. "Complex Dynamical Behavior in the Shear-Displacement Model for Bulk Metallic Glasses during Plastic Deformation," Complexity, Hindawi, vol. 2018, pages 1-13, December.
    5. Chengpeng Yang & Bozhao Zhang & Libo Fu & Zhanxin Wang & Jiao Teng & Ruiwen Shao & Ziqi Wu & Xiaoxue Chang & Jun Ding & Lihua Wang & Xiaodong Han, 2023. "Chemical inhomogeneity–induced profuse nanotwinning and phase transformation in AuCu nanowires," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Yu Tong & Lijian Song & Yurong Gao & Longlong Fan & Fucheng Li & Yiming Yang & Guang Mo & Yanhui Liu & Xiaoxue Shui & Yan Zhang & Meng Gao & Juntao Huo & Jichao Qiao & Eloi Pineda & Jun-Qiang Wang, 2023. "Strain-driven Kovacs-like memory effect in glasses," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Ge Wu & Sida Liu & Qing Wang & Jing Rao & Wenzhen Xia & Yong-Qiang Yan & Jürgen Eckert & Chang Liu & En Ma & Zhi-Wei Shan, 2023. "Substantially enhanced homogeneous plastic flow in hierarchically nanodomained amorphous alloys," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29821-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.