IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v524y2015i7564d10.1038_nature14674.html
   My bibliography  Save this article

Rejuvenation of metallic glasses by non-affine thermal strain

Author

Listed:
  • S. V. Ketov

    (WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University)

  • Y. H. Sun

    (University of Cambridge)

  • S. Nachum

    (University of Cambridge)

  • Z. Lu

    (Institute of Physics, Chinese Academy of Sciences)

  • A. Checchi

    (University of Cambridge
    University of Padua)

  • A. R. Beraldin

    (University of Cambridge
    University of Padua)

  • H. Y. Bai

    (Institute of Physics, Chinese Academy of Sciences)

  • W. H. Wang

    (Institute of Physics, Chinese Academy of Sciences)

  • D. V. Louzguine-Luzgin

    (WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University)

  • M. A. Carpenter

    (University of Cambridge)

  • A. L. Greer

    (WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University
    University of Cambridge)

Abstract

This study shows that metallic glasses can be rejuvenated (taken to higher energy states with more plasticity) by thermally cycling them at relatively low temperatures (well below the glass transition temperature); this is attributed to the effect of intrinsic structural inhomogeneities in the glassy state, which translate into localized internal strains as the temperature is cycled and the different regions expand and contract by different amounts.

Suggested Citation

  • S. V. Ketov & Y. H. Sun & S. Nachum & Z. Lu & A. Checchi & A. R. Beraldin & H. Y. Bai & W. H. Wang & D. V. Louzguine-Luzgin & M. A. Carpenter & A. L. Greer, 2015. "Rejuvenation of metallic glasses by non-affine thermal strain," Nature, Nature, vol. 524(7564), pages 200-203, August.
  • Handle: RePEc:nat:nature:v:524:y:2015:i:7564:d:10.1038_nature14674
    DOI: 10.1038/nature14674
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14674
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Tang & Haofei Zhou & Haiming Lu & Xiaodong Wang & Qingping Cao & Dongxian Zhang & Wei Yang & Jian-Zhong Jiang, 2022. "Extra plasticity governed by shear band deflection in gradient metallic glasses," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Cun Chen & Shaokang Guan & Liying Zhang, 2018. "Complex Dynamical Behavior in the Shear-Displacement Model for Bulk Metallic Glasses during Plastic Deformation," Complexity, Hindawi, vol. 2018, pages 1-13, December.
    3. Hengwei Luan & Xin Zhang & Hongyu Ding & Fei Zhang & J. H. Luan & Z. B. Jiao & Yi-Chieh Yang & Hengtong Bu & Ranbin Wang & Jialun Gu & Chunlin Shao & Qing Yu & Yang Shao & Qiaoshi Zeng & Na Chen & C. , 2022. "High-entropy induced a glass-to-glass transition in a metallic glass," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Yang Yang & Sheng Yin & Qin Yu & Yingxin Zhu & Jun Ding & Ruopeng Zhang & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2024. "Rejuvenation as the origin of planar defects in the CrCoNi medium entropy alloy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Yuan Wu & Di Cao & Yilin Yao & Guosheng Zhang & Jinyue Wang & Leqing Liu & Fengshou Li & Huiyang Fan & Xiongjun Liu & Hui Wang & Xianzhen Wang & Huihui Zhu & Suihe Jiang & Paraskevas Kontis & Dierk Ra, 2021. "Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Ge Wu & Sida Liu & Qing Wang & Jing Rao & Wenzhen Xia & Yong-Qiang Yan & Jürgen Eckert & Chang Liu & En Ma & Zhi-Wei Shan, 2023. "Substantially enhanced homogeneous plastic flow in hierarchically nanodomained amorphous alloys," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Yu Tong & Lijian Song & Yurong Gao & Longlong Fan & Fucheng Li & Yiming Yang & Guang Mo & Yanhui Liu & Xiaoxue Shui & Yan Zhang & Meng Gao & Juntao Huo & Jichao Qiao & Eloi Pineda & Jun-Qiang Wang, 2023. "Strain-driven Kovacs-like memory effect in glasses," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:524:y:2015:i:7564:d:10.1038_nature14674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.