IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4580.html
   My bibliography  Save this article

Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins

Author

Listed:
  • Yujie Wei

    (LNM, Institute of Mechanics, Chinese Academy of Sciences)

  • Yongqiang Li

    (LNM, Institute of Mechanics, Chinese Academy of Sciences)

  • Lianchun Zhu

    (LNM, Institute of Mechanics, Chinese Academy of Sciences)

  • Yao Liu

    (LNM, Institute of Mechanics, Chinese Academy of Sciences)

  • Xianqi Lei

    (LNM, Institute of Mechanics, Chinese Academy of Sciences)

  • Gang Wang

    (Laboratory for Microstructures, Shanghai University)

  • Yanxin Wu

    (National Engineering Research Center for Advanced Rolling Technology, University of Science and Technology Beijing)

  • Zhenli Mi

    (National Engineering Research Center for Advanced Rolling Technology, University of Science and Technology Beijing)

  • Jiabin Liu

    (Institute of Applied Mechanics, Zhejiang University)

  • Hongtao Wang

    (Institute of Applied Mechanics, Zhejiang University)

  • Huajian Gao

    (School of Engineering, Brown University)

Abstract

The strength–ductility trade-off has been a long-standing dilemma in materials science. This has limited the potential of many structural materials, steels in particular. Here we report a way of enhancing the strength of twinning-induced plasticity steel at no ductility trade-off. After applying torsion to cylindrical twinning-induced plasticity steel samples to generate a gradient nanotwinned structure along the radial direction, we find that the yielding strength of the material can be doubled at no reduction in ductility. It is shown that this evasion of strength–ductility trade-off is due to the formation of a gradient hierarchical nanotwinned structure during pre-torsion and subsequent tensile deformation. A series of finite element simulations based on crystal plasticity are performed to understand why the gradient twin structure can cause strengthening and ductility retention, and how sequential torsion and tension lead to the observed hierarchical nanotwinned structure through activation of different twinning systems.

Suggested Citation

  • Yujie Wei & Yongqiang Li & Lianchun Zhu & Yao Liu & Xianqi Lei & Gang Wang & Yanxin Wu & Zhenli Mi & Jiabin Liu & Hongtao Wang & Huajian Gao, 2014. "Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4580
    DOI: 10.1038/ncomms4580
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4580
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Tang & Haofei Zhou & Haiming Lu & Xiaodong Wang & Qingping Cao & Dongxian Zhang & Wei Yang & Jian-Zhong Jiang, 2022. "Extra plasticity governed by shear band deflection in gradient metallic glasses," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Chengpeng Yang & Bozhao Zhang & Libo Fu & Zhanxin Wang & Jiao Teng & Ruiwen Shao & Ziqi Wu & Xiaoxue Chang & Jun Ding & Lihua Wang & Xiaodong Han, 2023. "Chemical inhomogeneity–induced profuse nanotwinning and phase transformation in AuCu nanowires," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.