IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29752-0.html
   My bibliography  Save this article

Supraphysiological activation of TAK1 promotes skeletal muscle growth and mitigates neurogenic atrophy

Author

Listed:
  • Anirban Roy

    (University of Houston College of Pharmacy)

  • Ashok Kumar

    (University of Houston College of Pharmacy)

Abstract

Skeletal muscle mass is regulated through coordinated activation of multiple signaling pathways. TAK1 signalosome has been found to be activated in various conditions of muscle atrophy and hypertrophy. However, the role and mechanisms by which TAK1 regulates skeletal muscle mass remain less understood. Here, we demonstrate that supraphysiological activation of TAK1 in skeletal muscle of adult mice stimulates translational machinery, protein synthesis, and myofiber growth. TAK1 causes phosphorylation of elongation initiation factor 4E (eIF4E) independent of mTOR. Inactivation of TAK1 disrupts neuromuscular junction morphology and causes deregulation of Smad signaling. Using genetic approaches, we demonstrate that TAK1 prevents excessive loss of muscle mass during denervation. TAK1 favors the nuclear translocation of Smad4 and cytoplasmic retention of Smad6. TAK1 is also required for the phosphorylation of eIF4E in denervated skeletal muscle. Collectively, our results demonstrate that TAK1 supports skeletal muscle growth and prevents neurogenic muscle atrophy in adult mice.

Suggested Citation

  • Anirban Roy & Ashok Kumar, 2022. "Supraphysiological activation of TAK1 promotes skeletal muscle growth and mitigates neurogenic atrophy," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29752-0
    DOI: 10.1038/s41467-022-29752-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29752-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29752-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roberta Sartori & Vanina Romanello & Marco Sandri, 2021. "Mechanisms of muscle atrophy and hypertrophy: implications in health and disease," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Perrine Castets & Nathalie Rion & Marine Théodore & Denis Falcetta & Shuo Lin & Markus Reischl & Franziska Wild & Laurent Guérard & Christopher Eickhorst & Marielle Brockhoff & Maitea Guridi & Chikwen, 2019. "mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    3. Chen Wang & Li Deng & Mei Hong & Giridhar R. Akkaraju & Jun-ichiro Inoue & Zhijian J. Chen, 2001. "TAK1 is a ubiquitin-dependent kinase of MKK and IKK," Nature, Nature, vol. 412(6844), pages 346-351, July.
    4. Yuji Ogura & Sajedah M. Hindi & Shuichi Sato & Guangyan Xiong & Shizuo Akira & Ashok Kumar, 2015. "TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair," Nature Communications, Nature, vol. 6(1), pages 1-17, December.
    5. Jun Ninomiya-Tsuji & Kazuya Kishimoto & Atsushi Hiyama & Jun-ichiro Inoue & Zhaodan Cao & Kunihiro Matsumoto, 1999. "The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway," Nature, Nature, vol. 398(6724), pages 252-256, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinan Yang & Huijing Zhou & Xiawei Huang & Chengfang Wu & Kewei Zheng & Jingrong Deng & Yonggang Zheng & Jiahui Wang & Xiaofeng Chi & Xianjue Ma & Huimin Pan & Rui Shen & Duojia Pan & Bo Liu, 2024. "Innate immune and proinflammatory signals activate the Hippo pathway via a Tak1-STRIPAK-Tao axis," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Hongchun Lin & Hui Peng & Yuxiang Sun & Meijun Si & Jiao Wu & Yanlin Wang & Sandhya S. Thomas & Zheng Sun & Zhaoyong Hu, 2023. "Reprogramming of cis-regulatory networks during skeletal muscle atrophy in male mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Seok-Ting J. Ang & Elisa M. Crombie & Han Dong & Kuan-Ting Tan & Adriel Hernando & Dejie Yu & Stuart Adamson & Seonyoung Kim & Dominic J. Withers & Hua Huang & Shih-Yin Tsai, 2022. "Muscle 4EBP1 activation modifies the structure and function of the neuromuscular junction in mice," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Juqi Zou & Satoshi Anai & Satoshi Ota & Shizuka Ishitani & Masayuki Oginuma & Tohru Ishitani, 2023. "Determining zebrafish dorsal organizer size by a negative feedback loop between canonical/non-canonical Wnts and Tlr4/NFκB," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Jingchun Du & Yougui Xiang & Hua Liu & Shuzhen Liu & Ashwani Kumar & Chao Xing & Zhigao Wang, 2021. "RIPK1 dephosphorylation and kinase activation by PPP1R3G/PP1γ promote apoptosis and necroptosis," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Wenjun Xiong & Xueliang Gao & Tiantian Zhang & Baishan Jiang & Ming-Ming Hu & Xia Bu & Yang Gao & Lin-Zhou Zhang & Bo-Lin Xiao & Chuan He & Yishuang Sun & Haiou Li & Jie Shi & Xiangling Xiao & Bolin X, 2022. "USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Jean-Philippe Leduc-Gaudet & Anais Franco-Romero & Marina Cefis & Alaa Moamer & Felipe E. Broering & Giulia Milan & Roberta Sartori & Tomer Jordi Chaffer & Maude Dulac & Vincent Marcangeli & Dominique, 2023. "MYTHO is a novel regulator of skeletal muscle autophagy and integrity," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Flavia A. Graca & Anna Stephan & Benjamin A. Minden-Birkenmaier & Abbas Shirinifard & Yong-Dong Wang & Fabio Demontis & Myriam Labelle, 2023. "Platelet-derived chemokines promote skeletal muscle regeneration by guiding neutrophil recruitment to injured muscles," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Lingjie Yan & Tao Zhang & Kai Wang & Zezhao Chen & Yuanxin Yang & Bing Shan & Qi Sun & Mengmeng Zhang & Yichi Zhang & Yedan Zhong & Nan Liu & Jinyang Gu & Daichao Xu, 2022. "SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29752-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.