IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20123-1.html
   My bibliography  Save this article

Mechanisms of muscle atrophy and hypertrophy: implications in health and disease

Author

Listed:
  • Roberta Sartori

    (University of Padova
    Veneto Institute of Molecular Medicine)

  • Vanina Romanello

    (University of Padova
    Veneto Institute of Molecular Medicine)

  • Marco Sandri

    (University of Padova
    Veneto Institute of Molecular Medicine
    University of Padova
    McGill University)

Abstract

Skeletal muscle is the protein reservoir of our body and an important regulator of glucose and lipid homeostasis. Consequently, the growth or the loss of muscle mass can influence general metabolism, locomotion, eating and respiration. Therefore, it is not surprising that excessive muscle loss is a bad prognostic index of a variety of diseases ranging from cancer, organ failure, infections and unhealthy ageing. Muscle function is influenced by different quality systems that regulate the function of contractile proteins and organelles. These systems are controlled by transcriptional dependent programs that adapt muscle cells to environmental and nutritional clues. Mechanical, oxidative, nutritional and energy stresses, as well as growth factors or cytokines modulate signaling pathways that, ultimately, converge on protein and organelle turnover. Novel insights that control and orchestrate such complex network are continuously emerging and will be summarized in this review. Understanding the mechanisms that control muscle mass will provide therapeutic targets for the treatment of muscle loss in inherited and non-hereditary diseases and for the improvement of the quality of life during ageing.

Suggested Citation

  • Roberta Sartori & Vanina Romanello & Marco Sandri, 2021. "Mechanisms of muscle atrophy and hypertrophy: implications in health and disease," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20123-1
    DOI: 10.1038/s41467-020-20123-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20123-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20123-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Philippe Leduc-Gaudet & Anais Franco-Romero & Marina Cefis & Alaa Moamer & Felipe E. Broering & Giulia Milan & Roberta Sartori & Tomer Jordi Chaffer & Maude Dulac & Vincent Marcangeli & Dominique, 2023. "MYTHO is a novel regulator of skeletal muscle autophagy and integrity," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Anirban Roy & Ashok Kumar, 2022. "Supraphysiological activation of TAK1 promotes skeletal muscle growth and mitigates neurogenic atrophy," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Hongchun Lin & Hui Peng & Yuxiang Sun & Meijun Si & Jiao Wu & Yanlin Wang & Sandhya S. Thomas & Zheng Sun & Zhaoyong Hu, 2023. "Reprogramming of cis-regulatory networks during skeletal muscle atrophy in male mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Carl Elias Kutzner & Karen Carolyn Bauer & Jan-Wilm Lackmann & Richard James Acton & Anwesha Sarkar & Wojciech Pokrzywa & Thorsten Hoppe, 2024. "Optogenetic induction of mechanical muscle stress identifies myosin regulatory ubiquitin ligase NHL-1 in C. elegans," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Flavia A. Graca & Anna Stephan & Benjamin A. Minden-Birkenmaier & Abbas Shirinifard & Yong-Dong Wang & Fabio Demontis & Myriam Labelle, 2023. "Platelet-derived chemokines promote skeletal muscle regeneration by guiding neutrophil recruitment to injured muscles," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20123-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.