IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27204-9.html
   My bibliography  Save this article

Atlas of RNA editing events affecting protein expression in aged and Alzheimer’s disease human brain tissue

Author

Listed:
  • Yiyi Ma

    (Columbia University Medical Center)

  • Eric B. Dammer

    (Emory University School of Medicine
    Emory University School of Medicine)

  • Daniel Felsky

    (Centre for Addiction and Mental Health
    University of Toronto)

  • Duc M. Duong

    (Emory University School of Medicine
    Emory University School of Medicine)

  • Hans-Ulrich Klein

    (Columbia University Medical Center)

  • Charles C. White

    (Broad Institute)

  • Maotian Zhou

    (Emory University School of Medicine
    Emory University School of Medicine)

  • Benjamin A. Logsdon

    (Sage Bionetworks)

  • Cristin McCabe

    (Broad Institute)

  • Jishu Xu

    (Rush University Medical Center)

  • Minghui Wang

    (Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place
    Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place)

  • Thomas S. Wingo

    (Emory University School of Medicine
    Emory University School of Medicine
    Emory University School of Medicine)

  • James J. Lah

    (Emory University School of Medicine
    Emory University School of Medicine)

  • Bin Zhang

    (Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place
    Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place)

  • Julie Schneider

    (Rush University Medical Center)

  • Mariet Allen

    (Mayo Clinic Florida, Department of Neuroscience)

  • Xue Wang

    (Mayo Clinic Florida, Department of Health Sciences Research)

  • Nilüfer Ertekin-Taner

    (Mayo Clinic Florida, Department of Neuroscience
    Mayo Clinic Florida, Department of Neurology)

  • Nicholas T. Seyfried

    (Emory University School of Medicine
    Emory University School of Medicine
    Emory University School of Medicine)

  • Allan I. Levey

    (Emory University School of Medicine
    Emory University School of Medicine)

  • David A. Bennett

    (Rush University Medical Center)

  • Philip L. De Jager

    (Columbia University Medical Center
    Broad Institute)

Abstract

RNA editing is a feature of RNA maturation resulting in the formation of transcripts whose sequence differs from the genome template. Brain RNA editing may be altered in Alzheimer’s disease (AD). Here, we analyzed data from 1,865 brain samples covering 9 brain regions from 1,074 unrelated subjects on a transcriptome-wide scale to identify inter-regional differences in RNA editing. We expand the list of known brain editing events by identifying 58,761 previously unreported events. We note that only a small proportion of these editing events are found at the protein level in our proteome-wide validation effort. We also identified the occurrence of editing events associated with AD dementia, neuropathological measures and longitudinal cognitive decline in: SYT11, MCUR1, SOD2, ORAI2, HSDL2, PFKP, and GPRC5B. Thus, we present an extended reference set of brain RNA editing events, identify a subset that are found to be expressed at the protein level, and extend the narrative of transcriptomic perturbation in AD to RNA editing.

Suggested Citation

  • Yiyi Ma & Eric B. Dammer & Daniel Felsky & Duc M. Duong & Hans-Ulrich Klein & Charles C. White & Maotian Zhou & Benjamin A. Logsdon & Cristin McCabe & Jishu Xu & Minghui Wang & Thomas S. Wingo & James, 2021. "Atlas of RNA editing events affecting protein expression in aged and Alzheimer’s disease human brain tissue," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27204-9
    DOI: 10.1038/s41467-021-27204-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27204-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27204-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Makoto Tsuda & Yukari Shigemoto-Mogami & Schuichi Koizumi & Akito Mizokoshi & Shinichi Kohsaka & Michael W. Salter & Kazuhide Inoue, 2003. "P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury," Nature, Nature, vol. 424(6950), pages 778-783, August.
    2. Martin Vaeth & Jun Yang & Megumi Yamashita & Isabelle Zee & Miriam Eckstein & Camille Knosp & Ulrike Kaufmann & Peter Karoly Jani & Rodrigo S. Lacruz & Veit Flockerzi & Imre Kacskovics & Murali Prakri, 2017. "ORAI2 modulates store-operated calcium entry and T cell-mediated immunity," Nature Communications, Nature, vol. 8(1), pages 1-17, April.
    3. Meng How Tan & Qin Li & Raghuvaran Shanmugam & Robert Piskol & Jennefer Kohler & Amy N. Young & Kaiwen Ivy Liu & Rui Zhang & Gokul Ramaswami & Kentaro Ariyoshi & Ankita Gupte & Liam P. Keegan & Cyril , 2017. "Dynamic landscape and regulation of RNA editing in mammals," Nature, Nature, vol. 550(7675), pages 249-254, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Rodriguez de los Santos & Brian H. Kopell & Ariela Buxbaum Grice & Gauri Ganesh & Andy Yang & Pardis Amini & Lora E. Liharska & Eric Vornholt & John F. Fullard & Pengfei Dong & Eric Park & Sara, 2024. "Divergent landscapes of A-to-I editing in postmortem and living human brain," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N Ruiz-Suarez & SFM Bhatti & M Hermans & CB Silva & M Hesta, 2021. "Food hypersensitivity and feline hyperaesthesia syndrome (FHS): A case report," Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 66(8), pages 363-367.
    2. Karthika Devi Kiran Kumar & Shubhangi Singh & Stella Maria Schmelzle & Paul Vogel & Carolin Fruhner & Alfred Hanswillemenke & Adrian Brun & Jacqueline Wettengel & Yvonne Füll & Lukas Funk & Valentin M, 2024. "An improved SNAP-ADAR tool enables efficient RNA base editing to interfere with post-translational protein modification," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. George Sideris-Lampretsas & Silvia Oggero & Lynda Zeboudj & Rita Silva & Archana Bajpai & Gopuraja Dharmalingam & David A. Collier & Marzia Malcangio, 2023. "Galectin-3 activates spinal microglia to induce inflammatory nociception in wild type but not in mice modelling Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Cheng Shen & Yuqing Zhang & Wenwen Cui & Yimeng Zhao & Danqi Sheng & Xinyu Teng & Miaoqing Shao & Muneyoshi Ichikawa & Jin Wang & Motoyuki Hattori, 2023. "Structural insights into the allosteric inhibition of P2X4 receptors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Marlon S. Zambrano-Mila & Monika Witzenberger & Zohar Rosenwasser & Anna Uzonyi & Ronit Nir & Shay Ben-Aroya & Erez Y. Levanon & Schraga Schwartz, 2023. "Dissecting the basis for differential substrate specificity of ADAR1 and ADAR2," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Shannon Tansley & Sonali Uttam & Alba Ureña Guzmán & Moein Yaqubi & Alain Pacis & Marc Parisien & Haley Deamond & Calvin Wong & Oded Rabau & Nicole Brown & Lisbet Haglund & Jean Ouellet & Carlo Santag, 2022. "Single-cell RNA sequencing reveals time- and sex-specific responses of mouse spinal cord microglia to peripheral nerve injury and links ApoE to chronic pain," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Orshay Gabay & Yoav Shoshan & Eli Kopel & Udi Ben-Zvi & Tomer D. Mann & Noam Bressler & Roni Cohen‐Fultheim & Amos A. Schaffer & Shalom Hillel Roth & Ziv Tzur & Erez Y. Levanon & Eli Eisenberg, 2022. "Landscape of adenosine-to-inosine RNA recoding across human tissues," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Caroline B. Albertin & Sofia Medina-Ruiz & Therese Mitros & Hannah Schmidbaur & Gustavo Sanchez & Z. Yan Wang & Jane Grimwood & Joshua J. C. Rosenthal & Clifton W. Ragsdale & Oleg Simakov & Daniel S. , 2022. "Genome and transcriptome mechanisms driving cephalopod evolution," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Yuta Noda & Shunpei Okada & Tsutomu Suzuki, 2022. "Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Jianheng Liu & Tao Huang & Wanying Chen & Chenhui Ding & Tianxuan Zhao & Xueni Zhao & Bing Cai & Yusen Zhang & Song Li & Ling Zhang & Maoguang Xue & Xiuju He & Wanzhong Ge & Canquan Zhou & Yanwen Xu &, 2022. "Developmental mRNA m5C landscape and regulatory innovations of massive m5C modification of maternal mRNAs in animals," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Celina Tretter & Niklas Andrade Krätzig & Matteo Pecoraro & Sebastian Lange & Philipp Seifert & Clara Frankenberg & Johannes Untch & Gabriela Zuleger & Mathias Wilhelm & Daniel P. Zolg & Florian S. Dr, 2023. "Proteogenomic analysis reveals RNA as a source for tumor-agnostic neoantigen identification," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    12. Emily Howard & Benjamin P. Hurrell & Doumet Georges Helou & Pedram Shafiei-Jahani & Spyridon Hasiakos & Jacob Painter & Sonal Srikanth & Yousang Gwack & Omid Akbari, 2023. "Orai inhibition modulates pulmonary ILC2 metabolism and alleviates airway hyperreactivity in murine and humanized models," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27204-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.