IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29522-y.html
   My bibliography  Save this article

Using high-resolution contact networks to evaluate SARS-CoV-2 transmission and control in large-scale multi-day events

Author

Listed:
  • Rachael Pung

    (Ministry of Health
    London School of Hygiene and Tropical Medicine
    London School of Hygiene and Tropical Medicine)

  • Josh A. Firth

    (University of Oxford
    University of Oxford)

  • Lewis G. Spurgin

    (University of East Anglia)

  • Vernon J. Lee

    (Ministry of Health
    National University of Singapore)

  • Adam J. Kucharski

    (London School of Hygiene and Tropical Medicine
    London School of Hygiene and Tropical Medicine)

Abstract

The emergence of highly transmissible SARS-CoV-2 variants has created a need to reassess the risk posed by increasing social contacts as countries resume pre-pandemic activities, particularly in the context of resuming large-scale events over multiple days. To examine how social contacts formed in different activity settings influences interventions required to control Delta variant outbreaks, we collected high-resolution data on contacts among passengers and crew on cruise ships and combined the data with network transmission models. We found passengers had a median of 20 (IQR 10–36) unique close contacts per day, and over 60% of their contact episodes were made in dining or sports areas where mask wearing is typically limited. In simulated outbreaks, we found that vaccination coverage and rapid antigen tests had a larger effect than mask mandates alone, indicating the importance of combined interventions against Delta to reduce event risk in the vaccine era.

Suggested Citation

  • Rachael Pung & Josh A. Firth & Lewis G. Spurgin & Vernon J. Lee & Adam J. Kucharski, 2022. "Using high-resolution contact networks to evaluate SARS-CoV-2 transmission and control in large-scale multi-day events," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29522-y
    DOI: 10.1038/s41467-022-29522-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29522-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29522-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ciro Cattuto & Wouter Van den Broeck & Alain Barrat & Vittoria Colizza & Jean-François Pinton & Alessandro Vespignani, 2010. "Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    2. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    3. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    4. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    5. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    6. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    7. Ghahramani, Ali & Pantelic, Jovan & Lindberg, Casey & Mehl, Matthias & Srinivasan, Karthik & Gilligan, Brian & Arens, Edward, 2018. "Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems," Applied Energy, Elsevier, vol. 230(C), pages 42-51.
    8. Hanjue Xia & Johannes Horn & Monika J Piotrowska & Konrad Sakowski & André Karch & Hannan Tahir & Mirjam Kretzschmar & Rafael Mikolajczyk, 2021. "Effects of incomplete inter-hospital network data on the assessment of transmission dynamics of hospital-acquired infections," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-18, May.
    9. Mark Kibanov & Raphael H. Heiberger & Simone Rödder & Martin Atzmueller & Gerd Stumme, 2019. "Social studies of scholarly life with sensor-based ethnographic observations," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1387-1428, June.
    10. Masoud Shakiba & Azam Zavvari & Nader Aleebrahim & Mandeep Jit Singh, 2016. "Evaluating the academic trend of RFID technology based on SCI and SSCI publications from 2001 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 591-614, October.
    11. Laura Ozella & Francesco Gesualdo & Michele Tizzoni & Caterina Rizzo & Elisabetta Pandolfi & Ilaria Campagna & Alberto Eugenio Tozzi & Ciro Cattuto, 2018. "Close encounters between infants and household members measured through wearable proximity sensors," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    12. Massimo Riccaboni & Anna Romiti & Gianna Giudicati, 2011. "Co-experience Network Dynamics: Lessons from the Dance Floor," DISA Working Papers 2011/02, Department of Computer and Management Sciences, University of Trento, Italy, revised 28 Mar 2011.
    13. Barmak, D.H. & Dorso, C.O. & Otero, M., 2016. "Modelling dengue epidemic spreading with human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 129-140.
    14. Mikaela Irene D. Fudolig & Daniel Monsivais & Kunal Bhattacharya & Hang-Hyun Jo & Kimmo Kaski, 2020. "Different patterns of social closeness observed in mobile phone communication," Journal of Computational Social Science, Springer, vol. 3(1), pages 1-17, April.
    15. Ventura, Paulo Cesar & Aleta, Alberto & Rodrigues, Francisco A. & Moreno, Yamir, 2022. "Epidemic spreading in populations of mobile agents with adaptive behavioral response," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    16. Teruyoshi Kobayashi & Taro Takaguchi, 2017. "Significant ties: Identifying relationship lending in temporal interbank networks," Discussion Papers 1717, Graduate School of Economics, Kobe University.
    17. José F. Fontanari, 2023. "Stochastic Simulations of Casual Groups," Mathematics, MDPI, vol. 11(9), pages 1-16, May.
    18. Matthew Baggetta & Brad R. Fulton & Zoe Caplan, 2022. "Space and Interaction in Civil Society Organizations: An Exploratory Study in a US City," Social Inclusion, Cogitatio Press, vol. 10(3), pages 307-318.
    19. Dun, Han & Shuting, Yan & She, Han & Lingfei, Qian & Chris, Ampimah Benjamin, 2019. "Research on how the difference of personal propagation ability influences the epidemic spreading in activity-driven network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 311-318.
    20. Nan Zhang & Boni Su & Pak-To Chan & Te Miao & Peihua Wang & Yuguo Li, 2020. "Infection Spread and High-Resolution Detection of Close Contact Behaviors," IJERPH, MDPI, vol. 17(4), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29522-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.