IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29437-8.html
   My bibliography  Save this article

Accurate auto-labeling of chest X-ray images based on quantitative similarity to an explainable AI model

Author

Listed:
  • Doyun Kim

    (Massachusetts General Brigham and Harvard Medical School)

  • Joowon Chung

    (Massachusetts General Brigham and Harvard Medical School)

  • Jongmun Choi

    (Massachusetts General Brigham and Harvard Medical School)

  • Marc D. Succi

    (Massachusetts General Brigham and Harvard Medical School)

  • John Conklin

    (Massachusetts General Brigham and Harvard Medical School)

  • Maria Gabriela Figueiro Longo

    (Massachusetts General Brigham and Harvard Medical School)

  • Jeanne B. Ackman

    (Massachusetts General Brigham and Harvard Medical School)

  • Brent P. Little

    (Massachusetts General Brigham and Harvard Medical School)

  • Milena Petranovic

    (Massachusetts General Brigham and Harvard Medical School)

  • Mannudeep K. Kalra

    (Massachusetts General Brigham and Harvard Medical School)

  • Michael H. Lev

    (Massachusetts General Brigham and Harvard Medical School)

  • Synho Do

    (Massachusetts General Brigham and Harvard Medical School)

Abstract

The inability to accurately, efficiently label large, open-access medical imaging datasets limits the widespread implementation of artificial intelligence models in healthcare. There have been few attempts, however, to automate the annotation of such public databases; one approach, for example, focused on labor-intensive, manual labeling of subsets of these datasets to be used to train new models. In this study, we describe a method for standardized, automated labeling based on similarity to a previously validated, explainable AI (xAI) model-derived-atlas, for which the user can specify a quantitative threshold for a desired level of accuracy (the probability-of-similarity, pSim metric). We show that our xAI model, by calculating the pSim values for each clinical output label based on comparison to its training-set derived reference atlas, can automatically label the external datasets to a user-selected, high level of accuracy, equaling or exceeding that of human experts. We additionally show that, by fine-tuning the original model using the automatically labelled exams for retraining, performance can be preserved or improved, resulting in a highly accurate, more generalized model.

Suggested Citation

  • Doyun Kim & Joowon Chung & Jongmun Choi & Marc D. Succi & John Conklin & Maria Gabriela Figueiro Longo & Jeanne B. Ackman & Brent P. Little & Milena Petranovic & Mannudeep K. Kalra & Michael H. Lev & , 2022. "Accurate auto-labeling of chest X-ray images based on quantitative similarity to an explainable AI model," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29437-8
    DOI: 10.1038/s41467-022-29437-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29437-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29437-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cheng Ju & Aurélien Bibaut & Mark van der Laan, 2018. "The relative performance of ensemble methods with deep convolutional neural networks for image classification," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(15), pages 2800-2818, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyungjin Ko & Jaewook Lee & Junyoung Byun & Bumho Son & Saerom Park, 2019. "Loss-Driven Adversarial Ensemble Deep Learning for On-Line Time Series Analysis," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    2. JoonBum Leem & Ha Young Kim, 2020. "Action-specialized expert ensemble trading system with extended discrete action space using deep reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-39, July.
    3. Mireia Crispin-Ortuzar & Ramona Woitek & Marika A. V. Reinius & Elizabeth Moore & Lucian Beer & Vlad Bura & Leonardo Rundo & Cathal McCague & Stephan Ursprung & Lorena Escudero Sanchez & Paula Martin-, 2023. "Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Iftikhar Ahmad & Abdul Qayyum & Brij B. Gupta & Madini O. Alassafi & Rayed A. AlGhamdi, 2022. "Ensemble of 2D Residual Neural Networks Integrated with Atrous Spatial Pyramid Pooling Module for Myocardium Segmentation of Left Ventricle Cardiac MRI," Mathematics, MDPI, vol. 10(4), pages 1-23, February.
    5. Prakhar Bansal & Rahul Kumar & Somesh Kumar, 2021. "Disease Detection in Apple Leaves Using Deep Convolutional Neural Network," Agriculture, MDPI, vol. 11(7), pages 1-23, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29437-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.