IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i7p617-d586136.html
   My bibliography  Save this article

Disease Detection in Apple Leaves Using Deep Convolutional Neural Network

Author

Listed:
  • Prakhar Bansal

    (ABV-Indian Institute of Information Technology & Management Gwalior, Madhya Pradesh, Gwalior 474015, India)

  • Rahul Kumar

    (Indian Institute of Technology Ropar, Rupnagar 14001, Punjab, India)

  • Somesh Kumar

    (ABV-Indian Institute of Information Technology & Management Gwalior, Madhya Pradesh, Gwalior 474015, India)

Abstract

The automatic detection of diseases in plants is necessary, as it reduces the tedious work of monitoring large farms and it will detect the disease at an early stage of its occurrence to minimize further degradation of plants. Besides the decline of plant health, a country’s economy is highly affected by this scenario due to lower production. The current approach to identify diseases by an expert is slow and non-optimal for large farms. Our proposed model is an ensemble of pre-trained DenseNet121, EfficientNetB7, and EfficientNet NoisyStudent, which aims to classify leaves of apple trees into one of the following categories: healthy, apple scab, apple cedar rust, and multiple diseases, using its images. Various Image Augmentation techniques are included in this research to increase the dataset size, and subsequentially, the model’s accuracy increases. Our proposed model achieves an accuracy of 96.25% on the validation dataset. The proposed model can identify leaves with multiple diseases with 90% accuracy. Our proposed model achieved a good performance on different metrics and can be deployed in the agricultural domain to identify plant health accurately and timely.

Suggested Citation

  • Prakhar Bansal & Rahul Kumar & Somesh Kumar, 2021. "Disease Detection in Apple Leaves Using Deep Convolutional Neural Network," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:7:p:617-:d:586136
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/7/617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/7/617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    2. Cheng Ju & Aurélien Bibaut & Mark van der Laan, 2018. "The relative performance of ensemble methods with deep convolutional neural networks for image classification," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(15), pages 2800-2818, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xulu Gong & Shujuan Zhang, 2023. "A High-Precision Detection Method of Apple Leaf Diseases Using Improved Faster R-CNN," Agriculture, MDPI, vol. 13(2), pages 1-15, January.
    2. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdoulghafor & Samir Brahim Belhaouari & Normahira Mamat & Shamsul Faisal Mohd Hussein, 2022. "Advanced Technology in Agriculture Industry by Implementing Image Annotation Technique and Deep Learning Approach: A Review," Agriculture, MDPI, vol. 12(7), pages 1-35, July.
    3. Jinzhu Lu & Lijuan Tan & Huanyu Jiang, 2021. "Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification," Agriculture, MDPI, vol. 11(8), pages 1-18, July.
    4. Mingfeng Huang & Guoqin Xu & Junyu Li & Jianping Huang, 2021. "A Method for Segmenting Disease Lesions of Maize Leaves in Real Time Using Attention YOLACT++," Agriculture, MDPI, vol. 11(12), pages 1-14, December.
    5. Yiwei Zhong & Baojin Huang & Chaowei Tang, 2022. "Classification of Cassava Leaf Disease Based on a Non-Balanced Dataset Using Transformer-Embedded ResNet," Agriculture, MDPI, vol. 12(9), pages 1-18, September.
    6. Ranbing Yang & Yuming Zhai & Jian Zhang & Huan Zhang & Guangbo Tian & Jian Zhang & Peichen Huang & Lin Li, 2022. "Potato Visual Navigation Line Detection Based on Deep Learning and Feature Midpoint Adaptation," Agriculture, MDPI, vol. 12(9), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    3. Inkoo Cho & Noah Williams, 2024. "Collusive Outcomes Without Collusion," Papers 2403.07177, arXiv.org.
    4. Piotr Dybka & Bartosz Olesiński & Marek Rozkrut & Andrzej Torój, 2023. "Measuring the model uncertainty of shadow economy estimates," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 30(4), pages 1069-1106, August.
    5. Anna Sokolova, 2023. "Marginal Propensity to Consume and Unemployment: a Meta-analysis," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 813-846, December.
    6. Magdalena Florek & Jakub Gazda, 2021. "Traditional Food Products—Between Place Marketing, Economic Importance and Sustainable Development," Sustainability, MDPI, vol. 13(3), pages 1-14, January.
    7. Sebastian Gechert & Tomas Havranek & Zuzana Irsova & Dominika Kolcunova, 2022. "Measuring Capital-Labor Substitution: The Importance of Method Choices and Publication Bias," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 45, pages 55-82, July.
    8. Matthias Breuer & Harm H. Schütt, 2023. "Accounting for uncertainty: an application of Bayesian methods to accruals models," Review of Accounting Studies, Springer, vol. 28(2), pages 726-768, June.
    9. Roman Horvath & Ali Elminejad & Tomas Havranek, 2020. "Publication and Identification Biases in Measuring the Intertemporal Substitution of Labor Supply," Working Papers IES 2020/32, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2020.
    10. Chris Doucouliagos & Jakob de Haan & Jan-Egbert Sturm, 2022. "What drives financial development? A Meta-regression analysis [A new database of financial reforms]," Oxford Economic Papers, Oxford University Press, vol. 74(3), pages 840-868.
    11. Christoforos Andreou & Elena Andreou & Stephanie Michael & George Syrichas, 2021. "The Shadow Economy in Cyprus: Evidence from the Electricity Consumption and Currency Demand Methods," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 15(1), pages 46-74, June.
    12. Irsova, Zuzana & Doucouliagos, Hristos & Havranek, Tomas & Stanley, T. D., 2023. "Meta-Analysis of Social Science Research: A Practitioner’s Guide," EconStor Preprints 273719, ZBW - Leibniz Information Centre for Economics.
    13. Michail Filippidis & George Filis & Georgios Magkonis & Panagiotis Tzouvanas, 2023. "Evaluating robust determinants of the WTI/Brent oil price differential: A dynamic model averaging analysis," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 807-825, June.
    14. Mišák, Vojtěch, 2024. "Does heat cause homicides? A meta-analysis," International Review of Law and Economics, Elsevier, vol. 78(C).
    15. Zigraiova, Diana & Havranek, Tomas & Irsova, Zuzana & Novak, Jiri, 2021. "How puzzling is the forward premium puzzle? A meta-analysis," European Economic Review, Elsevier, vol. 134(C).
    16. Krzysztof Drachal & Michał Pawłowski, 2024. "Forecasting Selected Commodities’ Prices with the Bayesian Symbolic Regression," IJFS, MDPI, vol. 12(2), pages 1-56, March.
    17. Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
    18. Ebersberger, Bernd & Galia, Fabrice & Laursen, Keld & Salter, Ammon, 2021. "Inbound Open Innovation and Innovation Performance: A Robustness Study," Research Policy, Elsevier, vol. 50(7).
    19. Tomas Havranek & Zuzana Irsova & Lubica Laslopova & Olesia Zeynalova, 2020. "Skilled and Unskilled Labor Are Less Substitutable than Commonly Thought," Working Papers IES 2020/29, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2020.
    20. Gric, Zuzana & Bajzík, Josef & Badura, Ondřej, 2023. "Does sentiment affect stock returns? A meta-analysis across survey-based measures," International Review of Financial Analysis, Elsevier, vol. 89(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:7:p:617-:d:586136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.