IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41820-7.html
   My bibliography  Save this article

Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer

Author

Listed:
  • Mireia Crispin-Ortuzar

    (University of Cambridge
    University of Cambridge)

  • Ramona Woitek

    (University of Cambridge
    University of Cambridge
    Danube Private University)

  • Marika A. V. Reinius

    (University of Cambridge
    University of Cambridge
    Cambridge University Hospitals NHS Foundation Trust)

  • Elizabeth Moore

    (University of Cambridge)

  • Lucian Beer

    (University of Cambridge
    University of Cambridge
    Medical University of Vienna)

  • Vlad Bura

    (University of Cambridge
    University of Cambridge)

  • Leonardo Rundo

    (University of Cambridge
    University of Cambridge
    University of Salerno)

  • Cathal McCague

    (University of Cambridge
    University of Cambridge
    Cambridge University Hospitals NHS Foundation Trust)

  • Stephan Ursprung

    (University of Cambridge
    University of Cambridge)

  • Lorena Escudero Sanchez

    (University of Cambridge
    University of Cambridge)

  • Paula Martin-Gonzalez

    (University of Cambridge
    University of Cambridge)

  • Florent Mouliere

    (University of Cambridge
    Amsterdam UMC location Vrije Universiteit Amsterdam)

  • Dineika Chandrananda

    (University of Cambridge)

  • James Morris

    (University of Cambridge)

  • Teodora Goranova

    (University of Cambridge)

  • Anna M. Piskorz

    (University of Cambridge)

  • Naveena Singh

    (Barts Health NHS Trust)

  • Anju Sahdev

    (Barts Health NHS Trust)

  • Roxana Pintican

    (“Iuliu Hatieganu” University of Medicine and Pharmacy
    County Clinical Emergency Hospital)

  • Marta Zerunian

    (Sapienza University of Rome-Sant’Andrea University Hospital)

  • Nitzan Rosenfeld

    (University of Cambridge
    University of Cambridge)

  • Helen Addley

    (University of Cambridge
    University of Cambridge
    Cambridge University Hospitals NHS Foundation Trust)

  • Mercedes Jimenez-Linan

    (University of Cambridge
    Cambridge University Hospitals NHS Foundation Trust)

  • Florian Markowetz

    (University of Cambridge
    University of Cambridge)

  • Evis Sala

    (University of Cambridge
    University of Cambridge
    Cambridge University Hospitals NHS Foundation Trust
    Universita Cattolica del Sacro Cuore)

  • James D. Brenton

    (University of Cambridge
    University of Cambridge
    Cambridge University Hospitals NHS Foundation Trust)

Abstract

High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous disease that typically presents at an advanced, metastatic state. The multi-scale complexity of HGSOC is a major obstacle to predicting response to neoadjuvant chemotherapy (NACT) and understanding critical determinants of response. Here we present a framework to predict the response of HGSOC patients to NACT integrating baseline clinical, blood-based, and radiomic biomarkers extracted from all primary and metastatic lesions. We use an ensemble machine learning model trained to predict the change in total disease volume using data obtained at diagnosis (n = 72). The model is validated in an internal hold-out cohort (n = 20) and an independent external patient cohort (n = 42). In the external cohort the integrated radiomics model reduces the prediction error by 8% with respect to the clinical model, achieving an AUC of 0.78 for RECIST 1.1 classification compared to 0.47 for the clinical model. Our results emphasize the value of including radiomics data in integrative models of treatment response and provide methods for developing new biomarker-based clinical trials of NACT in HGSOC.

Suggested Citation

  • Mireia Crispin-Ortuzar & Ramona Woitek & Marika A. V. Reinius & Elizabeth Moore & Lucian Beer & Vlad Bura & Leonardo Rundo & Cathal McCague & Stephan Ursprung & Lorena Escudero Sanchez & Paula Martin-, 2023. "Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41820-7
    DOI: 10.1038/s41467-023-41820-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41820-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41820-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Viktor A. Adalsteinsson & Gavin Ha & Samuel S. Freeman & Atish D. Choudhury & Daniel G. Stover & Heather A. Parsons & Gregory Gydush & Sarah C. Reed & Denisse Rotem & Justin Rhoades & Denis Loginov & , 2017. "Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    2. Peter Ulz & Samantha Perakis & Qing Zhou & Tina Moser & Jelena Belic & Isaac Lazzeri & Albert Wölfler & Armin Zebisch & Armin Gerger & Gunda Pristauz & Edgar Petru & Brandon White & Charles E. S. Robe, 2019. "Inference of transcription factor binding from cell-free DNA enables tumor subtype prediction and early detection," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Ann-Marie Patch & Elizabeth L. Christie & Dariush Etemadmoghadam & Dale W. Garsed & Joshy George & Sian Fereday & Katia Nones & Prue Cowin & Kathryn Alsop & Peter J. Bailey & Karin S. Kassahn & Felici, 2015. "Whole–genome characterization of chemoresistant ovarian cancer," Nature, Nature, vol. 521(7553), pages 489-494, May.
    4. Cheng Ju & Aurélien Bibaut & Mark van der Laan, 2018. "The relative performance of ensemble methods with deep convolutional neural networks for image classification," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(15), pages 2800-2818, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kate E. Stanley & Tatjana Jatsenko & Stefania Tuveri & Dhanya Sudhakaran & Lore Lannoo & Kristel Calsteren & Marie Borre & Ilse Parijs & Leen Coillie & Kris Bogaert & Rodrigo Almeida Toledo & Liesbeth, 2024. "Cell type signatures in cell-free DNA fragmentation profiles reveal disease biology," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yunyun An & Xin Zhao & Ziteng Zhang & Zhaohua Xia & Mengqi Yang & Li Ma & Yu Zhao & Gang Xu & Shunda Du & Xiang’an Wu & Shuowen Zhang & Xin Hong & Xin Jin & Kun Sun, 2023. "DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Elena Denisenko & Leanne Kock & Adeline Tan & Aaron B. Beasley & Maria Beilin & Matthew E. Jones & Rui Hou & Dáithí Ó Muirí & Sanela Bilic & G. Raj K. A. Mohan & Stuart Salfinger & Simon Fox & Khaing , 2024. "Spatial transcriptomics reveals discrete tumour microenvironments and autocrine loops within ovarian cancer subclones," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Anna-Lisa Doebley & Minjeong Ko & Hanna Liao & A. Eden Cruikshank & Katheryn Santos & Caroline Kikawa & Joseph B. Hiatt & Robert D. Patton & Navonil De Sarkar & Katharine A. Collier & Anna C. H. Hoge , 2022. "A framework for clinical cancer subtyping from nucleosome profiling of cell-free DNA," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Aleix Prat & Fara Brasó-Maristany & Olga Martínez-Sáez & Esther Sanfeliu & Youli Xia & Meritxell Bellet & Patricia Galván & Débora Martínez & Tomás Pascual & Mercedes Marín-Aguilera & Anna Rodríguez &, 2023. "Circulating tumor DNA reveals complex biological features with clinical relevance in metastatic breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Maria Pouyiourou & Bianca N. Kraft & Timothy Wohlfromm & Michael Stahl & Boris Kubuschok & Harald Löffler & Ulrich T. Hacker & Gerdt Hübner & Lena Weiss & Michael Bitzer & Thomas Ernst & Philipp Schüt, 2023. "Nivolumab and ipilimumab in recurrent or refractory cancer of unknown primary: a phase II trial," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    7. Iris van ’t Erve & Bahar Alipanahi & Keith Lumbard & Zachary L. Skidmore & Lorenzo Rinaldi & Laurel K. Millberg & Jacob Carey & Bryan Chesnick & Stephen Cristiano & Carter Portwood & Tony Wu & Erica P, 2024. "Cancer treatment monitoring using cell-free DNA fragmentomes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Mingyun Bae & Gyuhee Kim & Tae-Rim Lee & Jin Mo Ahn & Hyunwook Park & Sook Ryun Park & Ki Byung Song & Eunsung Jun & Dongryul Oh & Jeong-Won Lee & Young Sik Park & Ki-Won Song & Jeong-Sik Byeon & Bo H, 2023. "Integrative modeling of tumor genomes and epigenomes for enhanced cancer diagnosis by cell-free DNA," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Jonathan C. M. Wan & Dennis Stephens & Lingqi Luo & James R. White & Caitlin M. Stewart & Benoît Rousseau & Dana W. Y. Tsui & Luis A. Diaz, 2022. "Genome-wide mutational signatures in low-coverage whole genome sequencing of cell-free DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Yaping Liu & Sarah C. Reed & Christopher Lo & Atish D. Choudhury & Heather A. Parsons & Daniel G. Stover & Gavin Ha & Gregory Gydush & Justin Rhoades & Denisse Rotem & Samuel Freeman & David W. Katz &, 2024. "FinaleMe: Predicting DNA methylation by the fragmentation patterns of plasma cell-free DNA," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Liujia Qian & Jianqing Zhu & Zhangzhi Xue & Yan Zhou & Nan Xiang & Hong Xu & Rui Sun & Wangang Gong & Xue Cai & Lu Sun & Weigang Ge & Yufeng Liu & Ying Su & Wangmin Lin & Yuecheng Zhan & Junjian Wang , 2024. "Proteomic landscape of epithelial ovarian cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    12. Hyungjin Ko & Jaewook Lee & Junyoung Byun & Bumho Son & Saerom Park, 2019. "Loss-Driven Adversarial Ensemble Deep Learning for On-Line Time Series Analysis," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    13. Nicolette M. Fonseca & Corinne Maurice-Dror & Cameron Herberts & Wilson Tu & William Fan & Andrew J. Murtha & Catarina Kollmannsberger & Edmond M. Kwan & Karan Parekh & Elena Schönlau & Cecily Q. Bern, 2024. "Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. JoonBum Leem & Ha Young Kim, 2020. "Action-specialized expert ensemble trading system with extended discrete action space using deep reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-39, July.
    15. Jennifer B. Shah & Dana Pueschl & Bradley Wubbenhorst & Mengyao Fan & John Pluta & Kurt D’Andrea & Anna P. Hubert & Jake S. Shilan & Wenting Zhou & Adam A. Kraya & Alba Llop Guevara & Catherine Ruan &, 2022. "Analysis of matched primary and recurrent BRCA1/2 mutation-associated tumors identifies recurrence-specific drivers," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    16. Doyun Kim & Joowon Chung & Jongmun Choi & Marc D. Succi & John Conklin & Maria Gabriela Figueiro Longo & Jeanne B. Ackman & Brent P. Little & Milena Petranovic & Mannudeep K. Kalra & Michael H. Lev & , 2022. "Accurate auto-labeling of chest X-ray images based on quantitative similarity to an explainable AI model," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Alicia-Marie Conway & Simon P. Pearce & Alexandra Clipson & Steven M. Hill & Francesca Chemi & Dan Slane-Tan & Saba Ferdous & A. S. Md Mukarram Hossain & Katarzyna Kamieniecka & Daniel J. White & Clai, 2024. "A cfDNA methylation-based tissue-of-origin classifier for cancers of unknown primary," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Xiao Zhou & Zhen Cheng & Mingyu Dong & Qi Liu & Weiyang Yang & Min Liu & Junzhang Tian & Weibin Cheng, 2022. "Tumor fractions deciphered from circulating cell-free DNA methylation for cancer early diagnosis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Tom Nyen & Mélanie Planque & Lilian Wagensveld & Joao A. G. Duarte & Esther A. Zaal & Ali Talebi & Matteo Rossi & Pierre-René Körner & Lara Rizzotto & Stijn Moens & Wout Wispelaere & Regina E. M. Baid, 2022. "Serine metabolism remodeling after platinum-based chemotherapy identifies vulnerabilities in a subgroup of resistant ovarian cancers," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Chunyang Bao & Richard W. Tourdot & Gregory J. Brunette & Chip Stewart & Lili Sun & Hideo Baba & Masayuki Watanabe & Agoston T. Agoston & Kunal Jajoo & Jon M. Davison & Katie S. Nason & Gad Getz & Ken, 2023. "Genomic signatures of past and present chromosomal instability in Barrett’s esophagus and early esophageal adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41820-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.