IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29331-3.html
   My bibliography  Save this article

Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations

Author

Listed:
  • Jingxuan Zhu

    (Jilin University
    University of Missouri)

  • Juexin Wang

    (University of Missouri)

  • Weiwei Han

    (Jilin University)

  • Dong Xu

    (University of Missouri)

Abstract

Protein allostery is a biological process facilitated by spatially long-range intra-protein communication, whereby ligand binding or amino acid change at a distant site affects the active site remotely. Molecular dynamics (MD) simulation provides a powerful computational approach to probe the allosteric effect. However, current MD simulations cannot reach the time scales of whole allosteric processes. The advent of deep learning made it possible to evaluate both spatially short and long-range communications for understanding allostery. For this purpose, we applied a neural relational inference model based on a graph neural network, which adopts an encoder-decoder architecture to simultaneously infer latent interactions for probing protein allosteric processes as dynamic networks of interacting residues. From the MD trajectories, this model successfully learned the long-range interactions and pathways that can mediate the allosteric communications between distant sites in the Pin1, SOD1, and MEK1 systems. Furthermore, the model can discover allostery-related interactions earlier in the MD simulation trajectories and predict relative free energy changes upon mutations more accurately than other methods.

Suggested Citation

  • Jingxuan Zhu & Juexin Wang & Weiwei Han & Dong Xu, 2022. "Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29331-3
    DOI: 10.1038/s41467-022-29331-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29331-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29331-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Juexin Wang & Anjun Ma & Yuzhou Chang & Jianting Gong & Yuexu Jiang & Ren Qi & Cankun Wang & Hongjun Fu & Qin Ma & Dong Xu, 2021. "scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Chen & Kexin Wang & Jianfang Chen & Chao Wu & Jun Mao & Yuanpeng Song & Yijing Liu & Zhenhua Shao & Xuemei Pu, 2024. "Integrative residue-intuitive machine learning and MD Approach to Unveil Allosteric Site and Mechanism for β2AR," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junyi Chen & Xiaoying Wang & Anjun Ma & Qi-En Wang & Bingqiang Liu & Lang Li & Dong Xu & Qin Ma, 2022. "Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Jingtao Wang & Gregory J. Fonseca & Jun Ding, 2024. "scSemiProfiler: Advancing large-scale single-cell studies through semi-profiling with deep generative models and active learning," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    3. Anjun Ma & Xiaoying Wang & Jingxian Li & Cankun Wang & Tong Xiao & Yuntao Liu & Hao Cheng & Juexin Wang & Yang Li & Yuzhou Chang & Jinpu Li & Duolin Wang & Yuexu Jiang & Li Su & Gang Xin & Shaopeng Gu, 2023. "Single-cell biological network inference using a heterogeneous graph transformer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Chunman Zuo & Yijian Zhang & Chen Cao & Jinwang Feng & Mingqi Jiao & Luonan Chen, 2022. "Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Zhenchao Tang & Guanxing Chen & Shouzhi Chen & Jianhua Yao & Linlin You & Calvin Yu-Chian Chen, 2024. "Modal-nexus auto-encoder for multi-modality cellular data integration and imputation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Xiaoying Wang & Maoteng Duan & Jingxian Li & Anjun Ma & Gang Xin & Dong Xu & Zihai Li & Bingqiang Liu & Qin Ma, 2024. "MarsGT: Multi-omics analysis for rare population inference using single-cell graph transformer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Juexin Wang & Jinpu Li & Skyler T. Kramer & Li Su & Yuzhou Chang & Chunhui Xu & Michael T. Eadon & Krzysztof Kiryluk & Qin Ma & Dong Xu, 2023. "Dimension-agnostic and granularity-based spatially variable gene identification using BSP," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Yunpei Xu & Shaokai Wang & Qilong Feng & Jiazhi Xia & Yaohang Li & Hong-Dong Li & Jianxin Wang, 2024. "scCAD: Cluster decomposition-based anomaly detection for rare cell identification in single-cell expression data," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Zhuohan Yu & Yanchi Su & Yifu Lu & Yuning Yang & Fuzhou Wang & Shixiong Zhang & Yi Chang & Ka-Chun Wong & Xiangtao Li, 2023. "Topological identification and interpretation for single-cell gene regulation elucidation across multiple platforms using scMGCA," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29331-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.