Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-29292-7
Download full text from publisher
References listed on IDEAS
- Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
- Markus Brockmann & Vincent A. Blomen & Joppe Nieuwenhuis & Elmer Stickel & Matthijs Raaben & Onno B. Bleijerveld & A. F. Maarten Altelaar & Lucas T. Jae & Thijn R. Brummelkamp, 2017. "Genetic wiring maps of single-cell protein states reveal an off-switch for GPCR signalling," Nature, Nature, vol. 546(7657), pages 307-311, June.
- Marinka Zitnik & Rok Sosič & Jure Leskovec, 2018. "Prioritizing network communities," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
- Silvana Konermann & Mark D. Brigham & Alexandro E. Trevino & Julia Joung & Omar O. Abudayyeh & Clea Barcena & Patrick D. Hsu & Naomi Habib & Jonathan S. Gootenberg & Hiroshi Nishimasu & Osamu Nureki &, 2015. "Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex," Nature, Nature, vol. 517(7536), pages 583-588, January.
- Gai Li & Qiang Chen, 2016. "Exploiting Explicit and Implicit Feedback for Personalized Ranking," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-11, January.
- Neil Vasan & José Baselga & David M. Hyman, 2019. "A view on drug resistance in cancer," Nature, Nature, vol. 575(7782), pages 299-309, November.
- Tijana Radivojević & Zak Costello & Kenneth Workman & Hector Garcia Martin, 2020. "A machine learning Automated Recommendation Tool for synthetic biology," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Heathcliff Dorado García & Fabian Pusch & Yi Bei & Jennifer Stebut & Glorymar Ibáñez & Kristina Guillan & Koshi Imami & Dennis Gürgen & Jana Rolff & Konstantin Helmsauer & Stephanie Meyer-Liesener & N, 2022. "Therapeutic targeting of ATR in alveolar rhabdomyosarcoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Backer, David & Billing, Trey, 2024. "Forecasting the prevalence of child acute malnutrition using environmental and conflict conditions as leading indicators," World Development, Elsevier, vol. 176(C).
- Mariana Oliveira & Luís Torgo & Vítor Santos Costa, 2021. "Evaluation Procedures for Forecasting with Spatiotemporal Data," Mathematics, MDPI, vol. 9(6), pages 1-27, March.
- Tian Zhou & Xinyi Zhu & Zhizhong Ye & Yong-Fei Wang & Chao Yao & Ning Xu & Mi Zhou & Jianyang Ma & Yuting Qin & Yiwei Shen & Yuanjia Tang & Zhihua Yin & Hong Xu & Yutong Zhang & Xiaoli Zang & Huihua D, 2022. "Lupus enhancer risk variant causes dysregulation of IRF8 through cooperative lncRNA and DNA methylation machinery," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
- Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
- Amir Pandi & Christoph Diehl & Ali Yazdizadeh Kharrazi & Scott A. Scholz & Elizaveta Bobkova & Léon Faure & Maren Nattermann & David Adam & Nils Chapin & Yeganeh Foroughijabbari & Charles Moritz & Nic, 2022. "A versatile active learning workflow for optimization of genetic and metabolic networks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Shaela Wright & Xujie Zhao & Wojciech Rosikiewicz & Shelby Mryncza & Judith Hyle & Wenjie Qi & Zhenling Liu & Siqi Yi & Yong Cheng & Beisi Xu & Chunliang Li, 2023. "Systematic characterization of the HOXA9 downstream targets in MLL-r leukemia by noncoding CRISPR screens," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Wei Xu & Sau Har Lee & Fengjun Qiu & Li Zhou & Xiaoling Wang & Tingjie Ye & Xudong Hu, 2021. "Association of SMAD4 loss with drug resistance in clinical cancer patients: A systematic meta-analysis," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-14, May.
- Chakravorty, Bhaskar & Arulampalam, Wiji & Bhatiya, Apurav Yash & Imbert, Clément & Rathelot, Roland, 2024.
"Can information about jobs improve the effectiveness of vocational training? Experimental evidence from India,"
Journal of Development Economics, Elsevier, vol. 169(C).
- Chakravorty, Bhaskar & Arulampalam, Wiji & Bhatiya, Apurav Yash & Imbert, Clement & Rathelot, Roland, 2021. "Can information about jobs improve the effectiveness of vocational training? Experimental evidence from India," CAGE Online Working Paper Series 567, Competitive Advantage in the Global Economy (CAGE).
- Chakravorty, Bhaskar & Arulampalam, Wiji & Bhatiya, Apurav Yash & Imbert, Clement & Rathelot, Roland, 2021. "Can information about jobs improve the effectiveness of vocational training? Experimental evidence from India," The Warwick Economics Research Paper Series (TWERPS) 1361, University of Warwick, Department of Economics.
- Chakravorty, Bhaskar & Arulampalam, Wiji & Bhatiya, Apurav Yash & Imbert, Clement & Rathelot, Roland, 2021. "Can Information about Jobs Improve the Effectiveness of Vocational Training? Experimental Evidence from India," IZA Discussion Papers 14427, Institute of Labor Economics (IZA).
- Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
- Albert Stuart Reece & Gary Kenneth Hulse, 2022. "European Epidemiological Patterns of Cannabis- and Substance-Related Congenital Neurological Anomalies: Geospatiotemporal and Causal Inferential Study," IJERPH, MDPI, vol. 20(1), pages 1-35, December.
- Haipeng Fu & Tingyu Wang & Xiaohui Kong & Kun Yan & Yang Yang & Jingyi Cao & Yafei Yuan & Nan Wang & Kehkooi Kee & Zhi John Lu & Qiaoran Xi, 2022. "A Nodal enhanced micropeptide NEMEP regulates glucose uptake during mesendoderm differentiation of embryonic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Giorgos Foutzopoulos & Nikolaos Pandis & Michail Tsagris, 2024. "Predicting Full Retirement Attainment of NBA Players," Working Papers 2403, University of Crete, Department of Economics.
- Michael Parzinger & Lucia Hanfstaengl & Ferdinand Sigg & Uli Spindler & Ulrich Wellisch & Markus Wirnsberger, 2020. "Residual Analysis of Predictive Modelling Data for Automated Fault Detection in Building’s Heating, Ventilation and Air Conditioning Systems," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Albert Stuart Reece & Gary Kenneth Hulse, 2022. "European Epidemiological Patterns of Cannabis- and Substance-Related Body Wall Congenital Anomalies: Geospatiotemporal and Causal Inferential Study," IJERPH, MDPI, vol. 19(15), pages 1-38, July.
- Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
- Marchetto, Elisa & Da Re, Daniele & Tordoni, Enrico & Bazzichetto, Manuele & Zannini, Piero & Celebrin, Simone & Chieffallo, Ludovico & Malavasi, Marco & Rocchini, Duccio, 2023. "Testing the effect of sample prevalence and sampling methods on probability- and favourability-based SDMs," Ecological Modelling, Elsevier, vol. 477(C).
- Yafeng Wang & Guiquan Zhang & Qingzhou Meng & Shisheng Huang & Panpan Guo & Qibin Leng & Lingyun Sun & Geng Liu & Xingxu Huang & Jianghuai Liu, 2022. "Precise tumor immune rewiring via synthetic CRISPRa circuits gated by concurrent gain/loss of transcription factors," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29292-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.