IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29201-y.html
   My bibliography  Save this article

Fixational drift is driven by diffusive dynamics in central neural circuitry

Author

Listed:
  • Nadav Ben-Shushan

    (The Hebrew University of Jerusalem)

  • Nimrod Shaham

    (The Hebrew University of Jerusalem
    Harvard University)

  • Mati Joshua

    (The Hebrew University of Jerusalem)

  • Yoram Burak

    (The Hebrew University of Jerusalem
    The Hebrew University of Jerusalem)

Abstract

During fixation and between saccades, our eyes undergo diffusive random motion called fixational drift. The role of fixational drift in visual coding and inference has been debated in the past few decades, but the mechanisms that underlie this motion remained unknown. In particular, it has been unclear whether fixational drift arises from peripheral sources, or from central sources within the brain. Here we show that fixational drift is correlated with neural activity, and identify its origin in central neural circuitry within the oculomotor system, upstream to the ocular motoneurons (OMNs). We analyzed a large data set of OMN recordings in the rhesus monkey, alongside precise measurements of eye position, and found that most of the variance of fixational eye drifts must arise upstream of the OMNs. The diffusive statistics of the motion points to the oculomotor integrator, a memory circuit responsible for holding the eyes still between saccades, as a likely source of the motion. Theoretical modeling, constrained by the parameters of the primate oculomotor system, supports this hypothesis by accounting for the amplitude as well as the statistics of the motion. Thus, we propose that fixational ocular drift provides a direct observation of diffusive dynamics in a neural circuit responsible for storage of continuous parameter memory in persistent neural activity. The identification of a mechanistic origin for fixational drift is likely to advance the understanding of its role in visual processing and inference.

Suggested Citation

  • Nadav Ben-Shushan & Nimrod Shaham & Mati Joshua & Yoram Burak, 2022. "Fixational drift is driven by diffusive dynamics in central neural circuitry," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29201-y
    DOI: 10.1038/s41467-022-29201-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29201-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29201-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michele Rucci & Ramon Iovin & Martina Poletti & Fabrizio Santini, 2007. "Miniature eye movements enhance fine spatial detail," Nature, Nature, vol. 447(7146), pages 852-855, June.
    2. Xaq Pitkow & Haim Sompolinsky & Markus Meister, 2007. "A Neural Computation for Visual Acuity in the Presence of Eye Movements," PLOS Biology, Public Library of Science, vol. 5(12), pages 1-14, December.
    3. Janis Intoy & Michele Rucci, 2020. "Finely tuned eye movements enhance visual acuity," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric G. Wu & Nora Brackbill & Colleen Rhoades & Alexandra Kling & Alex R. Gogliettino & Nishal P. Shah & Alexander Sher & Alan M. Litke & Eero P. Simoncelli & E. J. Chichilnisky, 2024. "Fixational eye movements enhance the precision of visual information transmitted by the primate retina," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric G. Wu & Nora Brackbill & Colleen Rhoades & Alexandra Kling & Alex R. Gogliettino & Nishal P. Shah & Alexander Sher & Alan M. Litke & Eero P. Simoncelli & E. J. Chichilnisky, 2024. "Fixational eye movements enhance the precision of visual information transmitted by the primate retina," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Noga Mosheiff & Haggai Agmon & Avraham Moriel & Yoram Burak, 2017. "An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-19, June.
    3. Jacob L. Yates & Shanna H. Coop & Gabriel H. Sarch & Ruei-Jr Wu & Daniel A. Butts & Michele Rucci & Jude F. Mitchell, 2023. "Detailed characterization of neural selectivity in free viewing primates," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Sheng Zhang & Miguel P Eckstein, 2010. "Evolution and Optimality of Similar Neural Mechanisms for Perception and Action during Search," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-11, September.
    5. Zhetuo Zhao & Ehud Ahissar & Jonathan D. Victor & Michele Rucci, 2023. "Inferring visual space from ultra-fine extra-retinal knowledge of gaze position," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29201-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.