IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15701-2.html
   My bibliography  Save this article

Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease

Author

Listed:
  • Jacob W. Vogel

    (McGill University)

  • Yasser Iturria-Medina

    (McGill University)

  • Olof T. Strandberg

    (Lund University)

  • Ruben Smith

    (Lund University
    Skåne University Hospital)

  • Elizabeth Levitis

    (McGill University)

  • Alan C. Evans

    (McGill University)

  • Oskar Hansson

    (Lund University
    Skåne University Hospital)

Abstract

Tau is a hallmark pathology of Alzheimer’s disease, and animal models have suggested that tau spreads from cell to cell through neuronal connections, facilitated by β-amyloid (Aβ). We test this hypothesis in humans using an epidemic spreading model (ESM) to simulate tau spread, and compare these simulations to observed patterns measured using tau-PET in 312 individuals along Alzheimer’s disease continuum. Up to 70% of the variance in the overall spatial pattern of tau can be explained by our model. Surprisingly, the ESM predicts the spatial patterns of tau irrespective of whether brain Aβ is present, but regions with greater Aβ burden show greater tau than predicted by connectivity patterns, suggesting a role of Aβ in accelerating tau spread. Altogether, our results provide evidence in humans that tau spreads through neuronal communication pathways even in normal aging, and that this process is accelerated by the presence of brain Aβ.

Suggested Citation

  • Jacob W. Vogel & Yasser Iturria-Medina & Olof T. Strandberg & Ruben Smith & Elizabeth Levitis & Alan C. Evans & Oskar Hansson, 2020. "Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15701-2
    DOI: 10.1038/s41467-020-15701-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15701-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15701-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukas Frontzkowski & Michael Ewers & Matthias Brendel & Davina Biel & Rik Ossenkoppele & Paul Hager & Anna Steward & Anna Dewenter & Sebastian Römer & Anna Rubinski & Katharina Buerger & Daniel Janowi, 2022. "Earlier Alzheimer’s disease onset is associated with tau pathology in brain hub regions and facilitated tau spreading," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Alexa Pichet Binette & Nicolai Franzmeier & Nicola Spotorno & Michael Ewers & Matthias Brendel & Davina Biel & Olof Strandberg & Shorena Janelidze & Sebastian Palmqvist & Niklas Mattsson-Carlgren & Ru, 2022. "Amyloid-associated increases in soluble tau relate to tau aggregation rates and cognitive decline in early Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Nicolai Franzmeier & Matthias Brendel & Leonie Beyer & Luna Slemann & Gabor G. Kovacs & Thomas Arzberger & Carolin Kurz & Gesine Respondek & Milica J. Lukic & Davina Biel & Anna Rubinski & Lukas Front, 2022. "Tau deposition patterns are associated with functional connectivity in primary tauopathies," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15701-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.