IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28574-4.html
   My bibliography  Save this article

Acoustically manipulating internal structure of disk-in-sphere endoskeletal droplets

Author

Listed:
  • Gazendra Shakya

    (University of Colorado)

  • Tao Yang

    (University of Colorado)

  • Yu Gao

    (University of Colorado)

  • Apresio K. Fajrial

    (University of Colorado)

  • Baowen Li

    (University of Colorado)

  • Massimo Ruzzene

    (University of Colorado)

  • Mark A. Borden

    (University of Colorado
    University of Colorado
    University of Colorado)

  • Xiaoyun Ding

    (University of Colorado
    University of Colorado
    University of Colorado)

Abstract

Manipulation of micro/nano particles has been well studied and demonstrated by optical, electromagnetic, and acoustic approaches, or their combinations. Manipulation of internal structure of droplet/particle is rarely explored and remains challenging due to its complicated nature. Here we demonstrated the manipulation of internal structure of disk-in-sphere endoskeletal droplets using acoustic wave. We developed a model to investigate the physical mechanisms behind this interesting phenomenon. Theoretical analysis of the acoustic interactions indicated that these assembly dynamics arise from a balance of the primary and secondary radiation forces. Additionally, the disk orientation was found to change with acoustic driving frequency, which allowed on-demand, reversible adjustment of the disk orientations with respect to the substrate. This dynamic behavior leads to unique reversible arrangements of the endoskeletal droplets and their internal architecture, which may provide an avenue for directed assembly of novel hierarchical colloidal architectures and intracellular organelles or intra-organoid structures.

Suggested Citation

  • Gazendra Shakya & Tao Yang & Yu Gao & Apresio K. Fajrial & Baowen Li & Massimo Ruzzene & Mark A. Borden & Xiaoyun Ding, 2022. "Acoustically manipulating internal structure of disk-in-sphere endoskeletal droplets," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28574-4
    DOI: 10.1038/s41467-022-28574-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28574-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28574-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David J. Collins & Belinda Morahan & Jose Garcia-Bustos & Christian Doerig & Magdalena Plebanski & Adrian Neild, 2015. "Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves," Nature Communications, Nature, vol. 6(1), pages 1-11, December.
    2. Lauren D. Zarzar & Vishnu Sresht & Ellen M. Sletten & Julia A. Kalow & Daniel Blankschtein & Timothy M. Swager, 2015. "Dynamically reconfigurable complex emulsions via tunable interfacial tensions," Nature, Nature, vol. 518(7540), pages 520-524, February.
    3. Randall M. Erb & Hui S. Son & Bappaditya Samanta & Vincent M. Rotello & Benjamin B. Yellen, 2009. "Magnetic assembly of colloidal superstructures with multipole symmetry," Nature, Nature, vol. 457(7232), pages 999-1002, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruoqin Zhang & Xichuan Zhao & Jinzhi Li & Di Zhou & Honglian Guo & Zhi-yuan Li & Feng Li, 2024. "Programmable photoacoustic patterning of microparticles in air," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Liang Shen & Zhenhua Tian & Kaichun Yang & Joseph Rich & Jianping Xia & Neil Upreti & Jinxin Zhang & Chuyi Chen & Nanjing Hao & Zhichao Pei & Tony Jun Huang, 2024. "Joint subarray acoustic tweezers enable controllable cell translation, rotation, and deformation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Ali Lashkaripour & David P. McIntyre & Suzanne G. K. Calhoun & Karl Krauth & Douglas M. Densmore & Polly M. Fordyce, 2024. "Design automation of microfluidic single and double emulsion droplets with machine learning," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Bradley D. Frank & Saveh Djalali & Agata W. Baryzewska & Paolo Giusto & Peter H. Seeberger & Lukas Zeininger, 2022. "Reversible morphology-resolved chemotactic actuation and motion of Janus emulsion droplets," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Jan Durrer & Prajwal Agrawal & Ali Ozgul & Stephan C. F. Neuhauss & Nitesh Nama & Daniel Ahmed, 2022. "A robot-assisted acoustofluidic end effector," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Zhiyuan Zhang & Alexander Sukhov & Jens Harting & Paolo Malgaretti & Daniel Ahmed, 2022. "Rolling microswarms along acoustic virtual walls," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Grace C. Thaggard & Kyoung Chul Park & Jaewoong Lim & Buddhima K. P. Maldeni Kankanamalage & Johanna Haimerl & Gina R. Wilson & Margaret K. McBride & Kelly L. Forrester & Esther R. Adelson & Virginia , 2023. "Breaking the photoswitch speed limit," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Mengxi Wu & Zhiteng Ma & Xianchen Xu & Brandon Lu & Yuyang Gu & Janghoon Yoon & Jianping Xia & Zhehan Ma & Neil Upreti & Imran J. Anwar & Stuart J. Knechtle & Eileen T. Chambers & Jean Kwun & Luke P. , 2024. "Acoustofluidic-based therapeutic apheresis system," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28574-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.