IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28533-z.html
   My bibliography  Save this article

RETRACTED ARTICLE: Pharmacological perturbation of CXCL1 signaling alleviates neuropathogenesis in a model of HEVA71 infection

Author

Listed:
  • Saravanan Gunaseelan

    (National University of Singapore
    National University of Singapore
    National University of Singapore)

  • Mohammed Zacky Ariffin

    (National University of Singapore)

  • Sanjay Khanna

    (National University of Singapore
    National University of Singapore)

  • Mong How Ooi

    (Sarawak General Hospital, Kuching
    Universiti Malaysia Sarawak, Kota Samarahan)

  • David Perera

    (Universiti Malaysia Sarawak, Kota Samarahan)

  • Justin Jang Hann Chu

    (National University of Singapore
    Technology and Research (A*STAR)
    National University of Singapore)

  • John Jia En Chua

    (National University of Singapore
    National University of Singapore
    Technology and Research (A*STAR)
    National University of Singapore)

Abstract

Hand, foot and mouth disease (HFMD) caused by Human Enterovirus A71 (HEVA71) infection is typically a benign infection. However, in minority of cases, children can develop severe neuropathology that culminate in fatality. Approximately 36.9% of HEVA71-related hospitalizations develop neurological complications, of which 10.5% are fatal. Yet, the mechanism by which HEVA71 induces these neurological deficits remain unclear. Here, we show that HEVA71-infected astrocytes release CXCL1 which supports viral replication in neurons by activating the CXCR2 receptor-associated ERK1/2 signaling pathway. Elevated CXCL1 levels correlates with disease severity in a HEVA71-infected mice model. In humans infected with HEVA71, high CXCL1 levels are only present in patients presenting neurological complications. CXCL1 release is specifically triggered by VP4 synthesis in HEVA71-infected astrocytes, which then acts via its receptor CXCR2 to enhance viral replication in neurons. Perturbing CXCL1 signaling or VP4 myristylation strongly attenuates viral replication. Treatment with AZD5069, a CXCL1-specific competitor, improves survival and lessens disease severity in infected animals. Collectively, these results highlight the CXCL1-CXCR2 signaling pathway as a potential target against HFMD neuropathogenesis.

Suggested Citation

  • Saravanan Gunaseelan & Mohammed Zacky Ariffin & Sanjay Khanna & Mong How Ooi & David Perera & Justin Jang Hann Chu & John Jia En Chua, 2022. "RETRACTED ARTICLE: Pharmacological perturbation of CXCL1 signaling alleviates neuropathogenesis in a model of HEVA71 infection," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28533-z
    DOI: 10.1038/s41467-022-28533-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28533-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28533-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gael Boivin & Julien Faget & Pierre-Benoit Ancey & Aspasia Gkasti & Julie Mussard & Camilla Engblom & Christina Pfirschke & Caroline Contat & Justine Pascual & Jessica Vazquez & Nathalie Bendriss-Verm, 2020. "Durable and controlled depletion of neutrophils in mice," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeff Yat-Fai Chung & Philip Chiu-Tsun Tang & Max Kam-Kwan Chan & Vivian Weiwen Xue & Xiao-Ru Huang & Calvin Sze-Hang Ng & Dongmei Zhang & Kam-Tong Leung & Chun-Kwok Wong & Tin-Lap Lee & Eric W-F Lam &, 2023. "Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Floriane Bretheau & Adrian Castellanos-Molina & Dominic Bélanger & Maxime Kusik & Benoit Mailhot & Ana Boisvert & Nicolas Vallières & Martine Lessard & Matthias Gunzer & Xiaoyu Liu & Éric Boilard & Ni, 2022. "The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    3. Amit Rimon & Chani Rakov & Vanda Lerer & Sivan Sheffer-Levi & Sivan Alkalay Oren & Tehila Shlomov & Lihi Shasha & Ruth Lubin & Khaled Zubeidat & Nora Jaber & Musa Mujahed & Asaf Wilensky & Shunit Copp, 2023. "Topical phage therapy in a mouse model of Cutibacterium acnes-induced acne-like lesions," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Jing Wang & Ramon Ocadiz-Ruiz & Matthew S. Hall & Grace G. Bushnell & Sophia M. Orbach & Joseph T. Decker & Ravi M. Raghani & Yining Zhang & Aaron H. Morris & Jacqueline S. Jeruss & Lonnie D. Shea, 2023. "A synthetic metastatic niche reveals antitumor neutrophils drive breast cancer metastatic dormancy in the lungs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Flavia A. Graca & Anna Stephan & Benjamin A. Minden-Birkenmaier & Abbas Shirinifard & Yong-Dong Wang & Fabio Demontis & Myriam Labelle, 2023. "Platelet-derived chemokines promote skeletal muscle regeneration by guiding neutrophil recruitment to injured muscles," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Justine Segaud & Wenjin Yao & Pierre Marschall & François Daubeuf & Christine Lehalle & Beatriz German & Pierre Meyer & Pierre Hener & Cécile Hugel & Eric Flatter & Marine Guivarch & Laetitia Clauss &, 2022. "Context-dependent function of TSLP and IL-1β in skin allergic sensitization and atopic march," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Paul Bergeron & Morgane Dos Santos & Lisa Sitterle & Georges Tarlet & Jeremy Lavigne & Winchygn Liu & Marine Gerbé de Thoré & Céline Clémenson & Lydia Meziani & Cathyanne Schott & Giulia Mazzaschi & K, 2024. "Non-homogenous intratumor ionizing radiation doses synergize with PD1 and CXCR2 blockade," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Zhihong Chen & Nishant Soni & Gonzalo Pinero & Bruno Giotti & Devon J. Eddins & Katherine E. Lindblad & James L. Ross & Montserrat Puigdelloses Vallcorba & Tanvi Joshi & Angelo Angione & Wes Thomason , 2023. "Monocyte depletion enhances neutrophil influx and proneural to mesenchymal transition in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28533-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.