IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28165-3.html
   My bibliography  Save this article

Carbohydrate-aromatic interface and molecular architecture of lignocellulose

Author

Listed:
  • Alex Kirui

    (Louisiana State University)

  • Wancheng Zhao

    (Louisiana State University)

  • Fabien Deligey

    (Louisiana State University)

  • Hui Yang

    (Pennsylvania State University)

  • Xue Kang

    (Louisiana State University
    Ningbo University)

  • Frederic Mentink-Vigier

    (National High Magnetic Field Laboratory)

  • Tuo Wang

    (Louisiana State University)

Abstract

Plant cell walls constitute the majority of lignocellulosic biomass and serve as a renewable resource of biomaterials and biofuel. Extensive interactions between polysaccharides and the aromatic polymer lignin make lignocellulose recalcitrant to enzymatic hydrolysis, but this polymer network remains poorly understood. Here we interrogate the nanoscale assembly of lignocellulosic components in plant stems using solid-state nuclear magnetic resonance and dynamic nuclear polarization approaches. We show that the extent of glycan-aromatic association increases sequentially across grasses, hardwoods, and softwoods. Lignin principally packs with the xylan in a non-flat conformation via non-covalent interactions and partially binds the junction of flat-ribbon xylan and cellulose surface as a secondary site. All molecules are homogeneously mixed in softwoods; this unique feature enables water retention even around the hydrophobic aromatics. These findings unveil the principles of polymer interactions underlying the heterogeneous architecture of lignocellulose, which may guide the rational design of more digestible plants and more efficient biomass-conversion pathways.

Suggested Citation

  • Alex Kirui & Wancheng Zhao & Fabien Deligey & Hui Yang & Xue Kang & Frederic Mentink-Vigier & Tuo Wang, 2022. "Carbohydrate-aromatic interface and molecular architecture of lignocellulose," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28165-3
    DOI: 10.1038/s41467-022-28165-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28165-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28165-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Xu & Meifang Cao & Jiefeng Zhou & Yuxia Pang & Zhixian Li & Dongjie Yang & Shao-Yuan Leu & Hongming Lou & Xuejun Pan & Xueqing Qiu, 2024. "Aqueous amine enables sustainable monosaccharide, monophenol, and pyridine base coproduction in lignocellulosic biorefineries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Malitha C. Dickwella Widanage & Isha Gautam & Daipayan Sarkar & Frederic Mentink-Vigier & Josh V. Vermaas & Shi-You Ding & Andrew S. Lipton & Thierry Fontaine & Jean-Paul Latgé & Ping Wang & Tuo Wang, 2024. "Adaptative survival of Aspergillus fumigatus to echinocandins arises from cell wall remodeling beyond β−1,3-glucan synthesis inhibition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Eirik G. Kommedal & Camilla F. Angeltveit & Leesa J. Klau & Iván Ayuso-Fernández & Bjørnar Arstad & Simen G. Antonsen & Yngve Stenstrøm & Dag Ekeberg & Francisco Gírio & Florbela Carvalheiro & Svein J, 2023. "Visible light-exposed lignin facilitates cellulose solubilization by lytic polysaccharide monooxygenases," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Wang, Lan & Bu, Yongxin & Sun, Lele & Chen, Hongzhang, 2023. "A sequential combination of advanced oxidation and enzymatic hydrolysis reduces the enzymatic dosage for lignocellulose degradation," Renewable Energy, Elsevier, vol. 211(C), pages 617-625.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28165-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.