IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28123-z.html
   My bibliography  Save this article

The shape of memory in temporal networks

Author

Listed:
  • Oliver E. Williams

    (School of Mathematical Sciences, Queen Mary University of London)

  • Lucas Lacasa

    (Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC))

  • Ana P. Millán

    (Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience
    Institute Carlos I for Theoretical and Computational Physics, University of Granada)

  • Vito Latora

    (School of Mathematical Sciences, Queen Mary University of London
    Dipartimento di Fisica ed Astronomia, Università di Catania and INFN
    Complexity Science Hub Vienna (CSHV))

Abstract

How to best define, detect and characterize network memory, i.e. the dependence of a network’s structure on its past, is currently a matter of debate. Here we show that the memory of a temporal network is inherently multidimensional, and we introduce a mathematical framework for defining and efficiently estimating the microscopic shape of memory, which characterises how the activity of each link intertwines with the activities of all other links. We validate our methodology on a range of synthetic models, and we then study the memory shape of real-world temporal networks spanning social, technological and biological systems, finding that these networks display heterogeneous memory shapes. In particular, online and offline social networks are markedly different, with the latter showing richer memory and memory scales. Our theory also elucidates the phenomenon of emergent virtual loops and provides a novel methodology for exploring the dynamically rich structure of complex systems.

Suggested Citation

  • Oliver E. Williams & Lucas Lacasa & Ana P. Millán & Vito Latora, 2022. "The shape of memory in temporal networks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28123-z
    DOI: 10.1038/s41467-022-28123-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28123-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28123-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Corsi, Fulvio & Lillo, Fabrizio & Pirino, Davide & Trapin, Luca, 2018. "Measuring the propagation of financial distress with Granger-causality tail risk networks," Journal of Financial Stability, Elsevier, vol. 38(C), pages 18-36.
    2. Mazzarisi, P. & Barucca, P. & Lillo, F. & Tantari, D., 2020. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," European Journal of Operational Research, Elsevier, vol. 281(1), pages 50-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Tian, Yang & Tian, Hui & Cui, Qimei & Zhu, Xuzhen, 2024. "Phase transition phenomena in social propagation with dynamic fashion tendency and individual contact," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piero Mazzarisi & Silvia Zaoli & Carlo Campajola & Fabrizio Lillo, 2020. "Tail Granger causalities and where to find them: extreme risk spillovers vs. spurious linkages," Papers 2005.01160, arXiv.org, revised May 2021.
    2. Chen, Wei & Qu, Shuai & Jiang, Manrui & Jiang, Cheng, 2021. "The construction of multilayer stock network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    3. Mazzarisi, Piero & Zaoli, Silvia & Campajola, Carlo & Lillo, Fabrizio, 2020. "Tail Granger causalities and where to find them: Extreme risk spillovers vs spurious linkages," Journal of Economic Dynamics and Control, Elsevier, vol. 121(C).
    4. Ouyang, Zisheng & Zhou, Xuewei & Wang, Gang-jin & Liu, Shuwen & Lu, Min, 2024. "Multilayer networks in the frequency domain: Measuring volatility connectedness among Chinese financial institutions," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 909-928.
    5. Laurentiu Dumitru ANDREI & Petre BREZEANU & Sorin-Marius DINU & Tiberiu DIACONESCU & Constantin ANGHELACHE, 2019. "Correlations and Turbulence of the European Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 88-100, March.
    6. Rabbani, Fereshteh & Khraisha, Tamer & Abbasi, Fatemeh & Jafari, Gholam Reza, 2021. "Memory effects on link formation in temporal networks: A fractional calculus approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    7. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    8. Chen, Bin-xia & Sun, Yan-lin, 2024. "Financial market connectedness between the U.S. and China: A new perspective based on non-linear causality networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    9. Samuel Ugwu & Pierre Miasnikof & Yuri Lawryshyn, 2023. "Distance Correlation Market Graph: The Case of S&P500 Stocks," Mathematics, MDPI, vol. 11(18), pages 1-13, September.
    10. Nicoló Andrea Caserini & Paolo Pagnottoni, 2022. "Effective transfer entropy to measure information flows in credit markets," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 729-757, October.
    11. Gabriele Tedeschi & Fabio Caccioli & Maria Cristina Recchioni, 2020. "Taming financial systemic risk: models, instruments and early warning indicators," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 1-7, January.
    12. Mazzarisi, Piero & Zaoli, Silvia & Lillo, Fabrizio & Delgado, Luis & Gurtner, Gérald, 2020. "New centrality and causality metrics assessing air traffic network interactions," Journal of Air Transport Management, Elsevier, vol. 85(C).
    13. Xue Cui & Lu Yang, 2024. "Systemic risk and idiosyncratic networks among global systemically important banks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 58-75, January.
    14. Marfatia, Hardik & Zhao, Wan-Li & Ji, Qiang, 2020. "Uncovering the global network of economic policy uncertainty," Research in International Business and Finance, Elsevier, vol. 53(C).
    15. Cheng, Qixiu & Lin, Yuqian & Zhou, Xuesong (Simon) & Liu, Zhiyuan, 2024. "Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters," European Journal of Operational Research, Elsevier, vol. 312(1), pages 182-197.
    16. Chen, Bin-xia & Sun, Yan-lin, 2023. "Extreme risk contagion between international crude oil and China's energy-intensive sectors: New evidence from quantile Granger causality and spillover methods," Energy, Elsevier, vol. 285(C).
    17. Fuwei Xu, 2024. "Modeling the Paths of China’s Systemic Financial Risk Contagion: A Ripple Network Perspective Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 47-73, January.
    18. Su, Zhi & Liu, Peng & Fang, Tong, 2022. "Uncertainty matters in US financial information spillovers: Evidence from a directed acyclic graph approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 229-242.
    19. ZHANG, Ping & WANG, Yiru & ZHAO, Min & YANG, Tzu-Yi, 2021. "Measuring Systemic Risk Of China'S Listed Banks," Studii Financiare (Financial Studies), Centre of Financial and Monetary Research "Victor Slavescu", vol. 25(3), pages 6-28, September.
    20. Kumar, Sudarshan & Bansal, Avijit & Chakrabarti, Anindya S., 2019. "Ripples on financial networks," IIMA Working Papers WP 2019-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28123-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.