IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27003-2.html
   My bibliography  Save this article

Osseosurface electronics—thin, wireless, battery-free and multimodal musculoskeletal biointerfaces

Author

Listed:
  • Le Cai

    (University of Arizona)

  • Alex Burton

    (University of Arizona)

  • David A. Gonzales

    (University of Arizona)

  • Kevin Albert Kasper

    (University of Arizona)

  • Amirhossein Azami

    (University of Arizona)

  • Roberto Peralta

    (University of Arizona)

  • Megan Johnson

    (University of Arizona)

  • Jakob A. Bakall

    (University of Arizona)

  • Efren Barron Villalobos

    (University of Arizona)

  • Ethan C. Ross

    (University of Arizona)

  • John A. Szivek

    (University of Arizona
    University of Arizona)

  • David S. Margolis

    (University of Arizona
    University of Arizona)

  • Philipp Gutruf

    (University of Arizona
    University of Arizona)

Abstract

Bioelectronic interfaces have been extensively investigated in recent years and advances in technology derived from these tools, such as soft and ultrathin sensors, now offer the opportunity to interface with parts of the body that were largely unexplored due to the lack of suitable tools. The musculoskeletal system is an understudied area where these new technologies can result in advanced capabilities. Bones as a sensor and stimulation location offer tremendous advantages for chronic biointerfaces because devices can be permanently bonded and provide stable optical, electromagnetic, and mechanical impedance over the course of years. Here we introduce a new class of wireless battery-free devices, named osseosurface electronics, which feature soft mechanics, ultra-thin form factor and miniaturized multimodal biointerfaces comprised of sensors and optoelectronics directly adhered to the surface of the bone. Potential of this fully implanted device class is demonstrated via real-time recording of bone strain, millikelvin resolution thermography and delivery of optical stimulation in freely-moving small animal models. Battery-free device architecture, direct growth to the bone via surface engineered calcium phosphate ceramic particles, demonstration of operation in deep tissue in large animal models and readout with a smartphone highlight suitable characteristics for exploratory research and utility as a diagnostic and therapeutic platform.

Suggested Citation

  • Le Cai & Alex Burton & David A. Gonzales & Kevin Albert Kasper & Amirhossein Azami & Roberto Peralta & Megan Johnson & Jakob A. Bakall & Efren Barron Villalobos & Ethan C. Ross & John A. Szivek & Davi, 2021. "Osseosurface electronics—thin, wireless, battery-free and multimodal musculoskeletal biointerfaces," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27003-2
    DOI: 10.1038/s41467-021-27003-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27003-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27003-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Philipp Gutruf & Rose T. Yin & K. Benjamin Lee & Jokubas Ausra & Jaclyn A. Brennan & Yun Qiao & Zhaoqian Xie & Roberto Peralta & Olivia Talarico & Alejandro Murillo & Sheena W. Chen & John P. Leshock , 2019. "Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Tobias Bruegmann & Tobias van Bremen & Christoph C. Vogt & Thorsten Send & Bernd K. Fleischmann & Philipp Sasse, 2015. "Optogenetic control of contractile function in skeletal muscle," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    3. Rongzhou Lin & Han-Joon Kim & Sippanat Achavananthadith & Selman A. Kurt & Shawn C. C. Tan & Haicheng Yao & Benjamin C. K. Tee & Jason K. W. Lee & John S. Ho, 2020. "Wireless battery-free body sensor networks using near-field-enabled clothing," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Chaoqiang Jiang & K. T. Chau & Chunhua Liu & Christopher H. T. Lee, 2017. "An Overview of Resonant Circuits for Wireless Power Transfer," Energies, MDPI, vol. 10(7), pages 1-20, June.
    5. Barman, Surajit Das & Reza, Ahmed Wasif & Kumar, Narendra & Karim, Md. Ershadul & Munir, Abu Bakar, 2015. "Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1525-1552.
    6. Sheng Xu & Yihui Zhang & Jiung Cho & Juhwan Lee & Xian Huang & Lin Jia & Jonathan A. Fan & Yewang Su & Jessica Su & Huigang Zhang & Huanyu Cheng & Bingwei Lu & Cunjiang Yu & Chi Chuang & Tae-il Kim & , 2013. "Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alex Burton & Zhong Wang & Dan Song & Sam Tran & Jessica Hanna & Dhrubo Ahmad & Jakob Bakall & David Clausen & Jerry Anderson & Roberto Peralta & Kirtana Sandepudi & Alex Benedetto & Ethan Yang & Diya, 2023. "Fully implanted battery-free high power platform for chronic spinal and muscular functional electrical stimulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex Burton & Zhong Wang & Dan Song & Sam Tran & Jessica Hanna & Dhrubo Ahmad & Jakob Bakall & David Clausen & Jerry Anderson & Roberto Peralta & Kirtana Sandepudi & Alex Benedetto & Ethan Yang & Diya, 2023. "Fully implanted battery-free high power platform for chronic spinal and muscular functional electrical stimulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Lin Chen & Jianfeng Hong & Mingjie Guan & Zaifa Lin & Wenxiang Chen, 2019. "A Converter Based on Independently Inductive Energy Injection and Free Resonance for Wireless Energy Transfer," Energies, MDPI, vol. 12(18), pages 1-19, September.
    4. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    5. Sergey Korchagin & Ekaterina Pleshakova & Irina Alexandrova & Vitaliy Dolgov & Elena Dogadina & Denis Serdechnyy & Konstantin Bublikov, 2021. "Mathematical Modeling of Electrical Conductivity of Anisotropic Nanocomposite with Periodic Structure," Mathematics, MDPI, vol. 9(22), pages 1-12, November.
    6. Narayanamoorthi R. & Vimala Juliet A. & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Zbigniew M. Leonowicz, 2017. "Class E Power Amplifier Design and Optimization for the Capacitive Coupled Wireless Power Transfer System in Biomedical Implants," Energies, MDPI, vol. 10(9), pages 1-20, September.
    7. Yang Liu & Bin Li & Mo Huang & Zhijian Chen & Xiuyin Zhang, 2018. "An Overview of Regulation Topologies in Resonant Wireless Power Transfer Systems for Consumer Electronics or Bio-Implants," Energies, MDPI, vol. 11(7), pages 1-22, July.
    8. Alicia Triviño-Cabrera & Zhengyu Lin & José A. Aguado, 2018. "Impact of Coil Misalignment in Data Transmission over the Inductive Link of an EV Wireless Charger," Energies, MDPI, vol. 11(3), pages 1-11, March.
    9. Hyeon-Seok Lee & Jae-Jung Yun, 2020. "Three-Port Converter for Integrating Energy Storage and Wireless Power Transfer Systems in Future Residential Applications," Energies, MDPI, vol. 13(1), pages 1-16, January.
    10. Wei Liu & K. T. Chau & W. H. Lam & Zhen Zhang, 2019. "Continuously Variable-Frequency Energy-Encrypted Wireless Power Transfer," Energies, MDPI, vol. 12(7), pages 1-18, April.
    11. Ben Minnaert & Franco Mastri & Nobby Stevens & Alessandra Costanzo & Mauro Mongiardo, 2018. "Coupling-Independent Capacitive Wireless Power Transfer Using Frequency Bifurcation," Energies, MDPI, vol. 11(7), pages 1-13, July.
    12. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    13. Gerald K Ijemaru & Kenneth Li-Minn Ang & Jasmine KP Seng, 2022. "Wireless power transfer and energy harvesting in distributed sensor networks: Survey, opportunities, and challenges," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501477211, March.
    14. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    15. Zhen Zhang & Ruilin Tong & Zhenyan Liang & Chunhua Liu & Jiang Wang, 2018. "Analysis and Control of Optimal Power Distribution for Multi-Objective Wireless Charging Systems," Energies, MDPI, vol. 11(7), pages 1-16, July.
    16. Lin Chen & Jianfeng Hong & Mingjie Guan & Wei Wu & Wenxiang Chen, 2019. "A Power Converter Decoupled from the Resonant Network for Wireless Inductive Coupling Power Transfer," Energies, MDPI, vol. 12(7), pages 1-18, March.
    17. Yujing Zhou & Chunhua Liu & Yongcan Huang, 2020. "Wireless Power Transfer for Implanted Medical Application: A Review," Energies, MDPI, vol. 13(11), pages 1-30, June.
    18. Xia Zhu & Ke Wu & Xiaohang Xie & Stephan W. Anderson & Xin Zhang, 2024. "A robust near-field body area network based on coaxially-shielded textile metamaterial," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. You-Chen Weng & Chih-Chiang Wu & Edward Yi Chang & Wei-Hua Chieng, 2021. "Minimum Power Input Control for Class-E Amplifier Using Depletion-Mode Gallium Nitride High Electron Mobility Transistor," Energies, MDPI, vol. 14(8), pages 1-16, April.
    20. Amirhossein Hajiaghajani & Patrick Rwei & Amir Hosein Afandizadeh Zargari & Alberto Ranier Escobar & Fadi Kurdahi & Michelle Khine & Peter Tseng, 2023. "Amphibious epidermal area networks for uninterrupted wireless data and power transfer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27003-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.