IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26997-z.html
   My bibliography  Save this article

Photoelectrocatalytic C–H halogenation over an oxygen vacancy-rich TiO2 photoanode

Author

Listed:
  • Zhenhua Li

    (Beijing University of Chemical Technology)

  • Lan Luo

    (Beijing University of Chemical Technology)

  • Min Li

    (Tsinghua University)

  • Wangsong Chen

    (Beijing University of Chemical Technology)

  • Yuguang Liu

    (Beijing University of Chemical Technology)

  • Jiangrong Yang

    (Beijing University of Chemical Technology)

  • Si-Min Xu

    (Beijing University of Chemical Technology)

  • Hua Zhou

    (Tsinghua University)

  • Lina Ma

    (Beijing University of Chemical Technology)

  • Ming Xu

    (Beijing University of Chemical Technology)

  • Xianggui Kong

    (Beijing University of Chemical Technology)

  • Haohong Duan

    (Tsinghua University)

Abstract

Photoelectrochemical cells are emerging as powerful tools for organic synthesis. However, they have rarely been explored for C–H halogenation to produce organic halides of industrial and medicinal importance. Here we report a photoelectrocatalytic strategy for C–H halogenation using an oxygen-vacancy-rich TiO2 photoanode with NaX (X=Cl−, Br−, I−). Under illumination, the photogenerated holes in TiO2 oxidize the halide ions to corresponding radicals or X2, which then react with the substrates to yield organic halides. The PEC C–H halogenation strategy exhibits broad substrate scope, including arenes, heteroarenes, nonpolar cycloalkanes, and aliphatic hydrocarbons. Experimental and theoretical data reveal that the oxygen vacancy on TiO2 facilitates the photo-induced carriers separation efficiency and more importantly, promotes halide ions adsorption with intermediary strength and hence increases the activity. Moreover, we designed a self-powered PEC system and directly utilised seawater as both the electrolyte and chloride ions source, attaining chlorocyclohexane productivity of 412 µmol h−1 coupled with H2 productivity of 9.2 mL h−1, thus achieving a promising way to use solar for upcycling halogen in ocean resource into valuable organic halides.

Suggested Citation

  • Zhenhua Li & Lan Luo & Min Li & Wangsong Chen & Yuguang Liu & Jiangrong Yang & Si-Min Xu & Hua Zhou & Lina Ma & Ming Xu & Xianggui Kong & Haohong Duan, 2021. "Photoelectrocatalytic C–H halogenation over an oxygen vacancy-rich TiO2 photoanode," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26997-z
    DOI: 10.1038/s41467-021-26997-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26997-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26997-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tengfei Li & Takahito Kasahara & Jingfu He & Kevan E. Dettelbach & Glenn M. Sammis & Curtis P. Berlinguette, 2017. "Photoelectrochemical oxidation of organic substrates in organic media," Nature Communications, Nature, vol. 8(1), pages 1-5, December.
    2. Dong Liu & Jin-Cheng Liu & Weizheng Cai & Jun Ma & Hong Bin Yang & Hai Xiao & Jun Li & Yujie Xiong & Yanqiang Huang & Bin Liu, 2019. "Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Jinghao Wang & Siyang Li & Caoyu Yang & Huiwen Gao & Lulu Zuo & Zhiyu Guo & Pengqi Yang & Yuheng Jiang & Jian Li & Li-Zhu Wu & Zhiyong Tang, 2024. "Photoelectrochemical Ni-catalyzed cross-coupling of aryl bromides with amine at ultra-low potential," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Weicheng Shen & Tingting Hu & Xueyan Liu & Jiajia Zha & Fanqi Meng & Zhikang Wu & Zhuolin Cui & Yu Yang & Hai Li & Qinghua Zhang & Lin Gu & Ruizheng Liang & Chaoliang Tan, 2022. "Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinghao Wang & Siyang Li & Caoyu Yang & Huiwen Gao & Lulu Zuo & Zhiyu Guo & Pengqi Yang & Yuheng Jiang & Jian Li & Li-Zhu Wu & Zhiyong Tang, 2024. "Photoelectrochemical Ni-catalyzed cross-coupling of aryl bromides with amine at ultra-low potential," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Yang Liu & Huishan Shang & Bing Zhang & Dongpeng Yan & Xu Xiang, 2024. "Surface fluorination of BiVO4 for the photoelectrochemical oxidation of glycerol to formic acid," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Zhe An & Zilong Zhang & Zeyu Huang & Hongbo Han & Binbin Song & Jian Zhang & Qi Ping & Yanru Zhu & Hongyan Song & Bin Wang & Lirong Zheng & Jing He, 2022. "Pt1 enhanced C-H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Yuan Lu & Byoung Guan Lee & Cheng Lin & Tae-Kyung Liu & Zhipeng Wang & Jiaming Miao & Sang Ho Oh & Ki Chul Kim & Kan Zhang & Jong Hyeok Park, 2024. "Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO4 photoanodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Bailin Tian & Fangyuan Wang & Pan Ran & Luhan Dai & Yang Lv & Yuxia Sun & Zhangyan Mu & Yamei Sun & Lingyu Tang & William A. Goddard & Mengning Ding, 2024. "Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Wan Ru Leow & Simon Völker & Raoul Meys & Jianan Erick Huang & Shaffiq A. Jaffer & André Bardow & Edward H. Sargent, 2023. "Electrified hydrocarbon-to-oxygenates coupled to hydrogen evolution for efficient greenhouse gas mitigation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Sudhagar Pitchaimuthu & Kishore Sridharan & Sanjay Nagarajan & Sengeni Ananthraj & Peter Robertson & Moritz F. Kuehnel & Ángel Irabien & Mercedes Maroto-Valer, 2022. "Solar Hydrogen Fuel Generation from Wastewater—Beyond Photoelectrochemical Water Splitting: A Perspective," Energies, MDPI, vol. 15(19), pages 1-23, October.
    8. Zhangliu Tian & Yumin Da & Meng Wang & Xinyu Dou & Xinhang Cui & Jie Chen & Rui Jiang & Shibo Xi & Baihua Cui & Yani Luo & Haotian Yang & Yu Long & Yukun Xiao & Wei Chen, 2023. "Selective photoelectrochemical oxidation of glucose to glucaric acid by single atom Pt decorated defective TiO2," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26997-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.