IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26937-x.html
   My bibliography  Save this article

Two-input protein logic gate for computation in living cells

Author

Listed:
  • Yashavantha L. Vishweshwaraiah

    (Penn State College of Medicine)

  • Jiaxing Chen

    (Penn State College of Medicine)

  • Venkat R. Chirasani

    (Penn State College of Medicine)

  • Erdem D. Tabdanov

    (Penn State College of Medicine)

  • Nikolay V. Dokholyan

    (Penn State College of Medicine
    Penn State College of Medicine
    Pennsylvania State University, University Park
    Pennsylvania State University, University Park)

Abstract

Advances in protein design have brought us within reach of developing a nanoscale programming language, in which molecules serve as operands and their conformational states function as logic gates with precise input and output behaviors. Combining these nanoscale computing agents into larger molecules and molecular complexes will allow us to write and execute “code”. Here, in an important step toward this goal, we report an engineered, single protein design that is allosterically regulated to function as a ‘two-input logic OR gate’. Our system is based on chemo- and optogenetic regulation of focal adhesion kinase. In the engineered FAK, all of FAK domain architecture is retained and key intramolecular interactions between the kinase and the FERM domains are externally controlled through a rapamycin-inducible uniRapR module in the kinase domain and a light-inducible LOV2 module in the FERM domain. Orthogonal regulation of protein function was possible using the chemo- and optogenetic switches. We demonstrate that dynamic FAK activation profoundly increased cell multiaxial complexity in the fibrous extracellular matrix microenvironment and decreased cell motility. This work provides proof-of-principle for fine multimodal control of protein function and paves the way for construction of complex nanoscale computing agents.

Suggested Citation

  • Yashavantha L. Vishweshwaraiah & Jiaxing Chen & Venkat R. Chirasani & Erdem D. Tabdanov & Nikolay V. Dokholyan, 2021. "Two-input protein logic gate for computation in living cells," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26937-x
    DOI: 10.1038/s41467-021-26937-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26937-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26937-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erdem D. Tabdanov & Vikram V. Puram & Zaw Win & Ashab Alamgir & Patrick W. Alford & Paolo P. Provenzano, 2018. "Bimodal sensing of guidance cues in mechanically distinct microenvironments," Nature Communications, Nature, vol. 9(1), pages 1-18, December.
    2. Onur Dagliyan & Andrey Krokhotin & Irem Ozkan-Dagliyan & Alexander Deiters & Channing J. Der & Klaus M. Hahn & Nikolay V. Dokholyan, 2018. "Computational design of chemogenetic and optogenetic split proteins," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    3. Jian Wang & Abha Jain & Leanna R. McDonald & Craig Gambogi & Andrew L. Lee & Nikolay V. Dokholyan, 2020. "Mapping allosteric communications within individual proteins," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauren Gambill & August Staubus & Kim Wai Mo & Andrea Ameruoso & James Chappell, 2023. "A split ribozyme that links detection of a native RNA to orthogonal protein outputs," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Federica Maschietto & Uriel N. Morzan & Florentina Tofoleanu & Aria Gheeraert & Apala Chaudhuri & Gregory W. Kyro & Peter Nekrasov & Bernard Brooks & J. Patrick Loria & Ivan Rivalta & Victor S. Batist, 2023. "Turning up the heat mimics allosteric signaling in imidazole-glycerol phosphate synthase," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Zhong Guo & Rinky D. Parakra & Ying Xiong & Wayne A. Johnston & Patricia Walden & Selvakumar Edwardraja & Shayli Varasteh Moradi & Jacobus P. J. Ungerer & Hui-wang Ai & Jonathan J. Phillips & Kirill A, 2022. "Engineering and exploiting synthetic allostery of NanoLuc luciferase," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26937-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.