IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06531-4.html
   My bibliography  Save this article

Computational design of chemogenetic and optogenetic split proteins

Author

Listed:
  • Onur Dagliyan

    (University of North Carolina at Chapel Hill
    University of North Carolina at Chapel Hill
    University of North Carolina at Chapel Hill
    Harvard Medical School)

  • Andrey Krokhotin

    (University of North Carolina at Chapel Hill
    Stanford University School of Medicine)

  • Irem Ozkan-Dagliyan

    (University of North Carolina at Chapel Hill
    University of North Carolina at Chapel Hill)

  • Alexander Deiters

    (University of Pittsburgh)

  • Channing J. Der

    (University of North Carolina at Chapel Hill
    University of North Carolina at Chapel Hill)

  • Klaus M. Hahn

    (University of North Carolina at Chapel Hill
    University of North Carolina at Chapel Hill)

  • Nikolay V. Dokholyan

    (University of North Carolina at Chapel Hill
    University of North Carolina at Chapel Hill
    Penn State College of Medicine)

Abstract

Controlling protein activity with chemogenetics and optogenetics has proven to be powerful for testing hypotheses regarding protein function in rapid biological processes. Controlling proteins by splitting them and then rescuing their activity through inducible reassembly offers great potential to control diverse protein activities. Building split proteins has been difficult due to spontaneous assembly, difficulty in identifying appropriate split sites, and inefficient induction of effective reassembly. Here we present an automated approach to design effective split proteins regulated by a ligand or by light (SPELL). We develop a scoring function together with an engineered domain to enable reassembly of protein halves with high efficiency and with reduced spontaneous assembly. We demonstrate SPELL by applying it to proteins of various shapes and sizes in living cells. The SPELL server (spell.dokhlab.org) offers an automated prediction of split sites.

Suggested Citation

  • Onur Dagliyan & Andrey Krokhotin & Irem Ozkan-Dagliyan & Alexander Deiters & Channing J. Der & Klaus M. Hahn & Nikolay V. Dokholyan, 2018. "Computational design of chemogenetic and optogenetic split proteins," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06531-4
    DOI: 10.1038/s41467-018-06531-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06531-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06531-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yashavantha L. Vishweshwaraiah & Jiaxing Chen & Venkat R. Chirasani & Erdem D. Tabdanov & Nikolay V. Dokholyan, 2021. "Two-input protein logic gate for computation in living cells," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Zhong Guo & Rinky D. Parakra & Ying Xiong & Wayne A. Johnston & Patricia Walden & Selvakumar Edwardraja & Shayli Varasteh Moradi & Jacobus P. J. Ungerer & Hui-wang Ai & Jonathan J. Phillips & Kirill A, 2022. "Engineering and exploiting synthetic allostery of NanoLuc luciferase," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Lauren Gambill & August Staubus & Kim Wai Mo & Andrea Ameruoso & James Chappell, 2023. "A split ribozyme that links detection of a native RNA to orthogonal protein outputs," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06531-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.