IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26746-2.html
   My bibliography  Save this article

Constitutive activation of the PI3K-Akt-mTORC1 pathway sustains the m.3243 A > G mtDNA mutation

Author

Listed:
  • Chih-Yao Chung

    (Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL)

  • Kritarth Singh

    (Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL)

  • Vassilios N. Kotiadis

    (Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL)

  • Gabriel E. Valdebenito

    (Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL)

  • Jee Hwan Ahn

    (Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL)

  • Emilie Topley

    (Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL)

  • Joycelyn Tan

    (Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL)

  • William D. Andrews

    (Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL)

  • Benoit Bilanges

    (UCL Cancer Institute)

  • Robert D. S. Pitceathly

    (UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Queen Square)

  • Gyorgy Szabadkai

    (Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL
    University of Padua
    The Francis Crick Institute)

  • Mariia Yuneva

    (The Francis Crick Institute)

  • Michael R. Duchen

    (Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL)

Abstract

Mutations of the mitochondrial genome (mtDNA) cause a range of profoundly debilitating clinical conditions for which treatment options are very limited. Most mtDNA diseases show heteroplasmy – tissues express both wild-type and mutant mtDNA. While the level of heteroplasmy broadly correlates with disease severity, the relationships between specific mtDNA mutations, heteroplasmy, disease phenotype and severity are poorly understood. We have carried out extensive bioenergetic, metabolomic and RNAseq studies on heteroplasmic patient-derived cells carrying the most prevalent disease related mtDNA mutation, the m.3243 A > G. These studies reveal that the mutation promotes changes in metabolites which are associated with the upregulation of the PI3K-Akt-mTORC1 axis in patient-derived cells and tissues. Remarkably, pharmacological inhibition of PI3K, Akt, or mTORC1 reduced mtDNA mutant load and partially rescued cellular bioenergetic function. The PI3K-Akt-mTORC1 axis thus represents a potential therapeutic target that may benefit people suffering from the consequences of the m.3243 A > G mutation.

Suggested Citation

  • Chih-Yao Chung & Kritarth Singh & Vassilios N. Kotiadis & Gabriel E. Valdebenito & Jee Hwan Ahn & Emilie Topley & Joycelyn Tan & William D. Andrews & Benoit Bilanges & Robert D. S. Pitceathly & Gyorgy, 2021. "Constitutive activation of the PI3K-Akt-mTORC1 pathway sustains the m.3243 A > G mtDNA mutation," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26746-2
    DOI: 10.1038/s41467-021-26746-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26746-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26746-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yi-Fan Lin & Anna M. Schulz & Mark W. Pellegrino & Yun Lu & Shai Shaham & Cole M. Haynes, 2016. "Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response," Nature, Nature, vol. 533(7603), pages 416-419, May.
    2. Nikolay P. Kandul & Ting Zhang & Bruce A. Hay & Ming Guo, 2016. "Selective removal of deletion-bearing mitochondrial DNA in heteroplasmic Drosophila," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    3. Hugo Varet & Loraine Brillet-Guéguen & Jean-Yves Coppée & Marie-Agnès Dillies, 2016. "SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erminia Donnarumma & Michael Kohlhaas & Elodie Vimont & Etienne Kornobis & Thibault Chaze & Quentin Giai Gianetto & Mariette Matondo & Maryse Moya-Nilges & Christoph Maack & Timothy Wai, 2022. "Mitochondrial Fission Process 1 controls inner membrane integrity and protects against heart failure," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    2. Huan Yang & Caroline Sibilla & Raymond Liu & Jina Yun & Bruce A. Hay & Craig Blackstone & David C. Chan & Robert J. Harvey & Ming Guo, 2022. "Clueless/CLUH regulates mitochondrial fission by promoting recruitment of Drp1 to mitochondria," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Eirini Lionaki & Ilias Gkikas & Ioanna Daskalaki & Maria-Konstantina Ioannidi & Maria I. Klapa & Nektarios Tavernarakis, 2022. "Mitochondrial protein import determines lifespan through metabolic reprogramming and de novo serine biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Maxime Mistretta & Mena Cimino & Pascal Campagne & Stevenn Volant & Etienne Kornobis & Olivier Hebert & Christophe Rochais & Patrick Dallemagne & Cédric Lecoutey & Camille Tisnerat & Alban Lepailleur , 2024. "Dynamic microfluidic single-cell screening identifies pheno-tuning compounds to potentiate tuberculosis therapy," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Sarah L. Sokol-Borrelli & Sarah M. Reilly & Michael J. Holmes & Stephanie B. Orchanian & Mackenzie D. Massmann & Katherine G. Sharp & Leah F. Cabo & Hisham S. Alrubaye & Bruno Martorelli Di Genova & M, 2023. "A transcriptional network required for bradyzoite development in Toxoplasma gondii is dispensable for recrudescent disease," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Evelyn Fessler & Luisa Krumwiede & Lucas T. Jae, 2022. "DELE1 tracks perturbed protein import and processing in human mitochondria," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Yanan Li & Yonghua Wu & Ru Xu & Jialing Guo & Fenglei Quan & Yongyuan Zhang & Di Huang & Yiran Pei & Hua Gao & Wei Liu & Junjie Liu & Zhenzhong Zhang & Ruijie Deng & Jinjin Shi & Kaixiang Zhang, 2023. "In vivo imaging of mitochondrial DNA mutations using an integrated nano Cas12a sensor," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Kirill Grigorev & Theodore M. Nelson & Eliah G. Overbey & Nadia Houerbi & JangKeun Kim & Deena Najjar & Namita Damle & Evan E. Afshin & Krista A. Ryon & Jean Thierry-Mieg & Danielle Thierry-Mieg & Ari, 2024. "Direct RNA sequencing of astronaut blood reveals spaceflight-associated m6A increases and hematopoietic transcriptional responses," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Chrats Melkonian & Francisco Zorrilla & Inge Kjærbølling & Sonja Blasche & Daniel Machado & Mette Junge & Kim Ib Sørensen & Lene Tranberg Andersen & Kiran R. Patil & Ahmad A. Zeidan, 2023. "Microbial interactions shape cheese flavour formation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26746-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.