IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v467y2010i7315d10.1038_nature09376.html
   My bibliography  Save this article

Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows

Author

Listed:
  • Mirjam Mayer

    (Max Planck Institute of Molecular Cell Biology and Genetics
    Max Planck Institute for the Physics of Complex Systems)

  • Martin Depken

    (Max Planck Institute of Molecular Cell Biology and Genetics
    Max Planck Institute for the Physics of Complex Systems
    Present address: Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.)

  • Justin S. Bois

    (Max Planck Institute of Molecular Cell Biology and Genetics
    Max Planck Institute for the Physics of Complex Systems)

  • Frank Jülicher

    (Max Planck Institute for the Physics of Complex Systems)

  • Stephan W. Grill

    (Max Planck Institute of Molecular Cell Biology and Genetics
    Max Planck Institute for the Physics of Complex Systems)

Abstract

Go with the actomyosin flow Cortical flows of actomyosin are central to many processes in cellular and developmental biology. In the one-cell Caenorhabditis elegans embryo, anteroposterior polarity, a prerequisite for asymmetric cell division, is established by large-scale flow of the actomyosin cortex that segregates cortical polarity proteins between the anterior and posterior domains. The underlying forces and physical principles behind long-range flow remain unclear. Mayer et al. have devised a novel method to measure cortical tension (total mechanical tension) and find that cortical flows are driven by contractility of the actomyosin network. The direction of flow depends on anisotropies in the cortical tension, and long-range cortical flow occurs only if the cortex is sufficiently viscous.

Suggested Citation

  • Mirjam Mayer & Martin Depken & Justin S. Bois & Frank Jülicher & Stephan W. Grill, 2010. "Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows," Nature, Nature, vol. 467(7315), pages 617-621, September.
  • Handle: RePEc:nat:nature:v:467:y:2010:i:7315:d:10.1038_nature09376
    DOI: 10.1038/nature09376
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature09376
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature09376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christina Rou Hsu & Gaganpreet Sangha & Wayne Fan & Joey Zheng & Kenji Sugioka, 2023. "Contractile ring mechanosensation and its anillin-dependent tuning during early embryogenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Sorosh Amiri & Camelia Muresan & Xingbo Shang & Clotilde Huet-Calderwood & Martin A. Schwartz & David A. Calderwood & Michael Murrell, 2023. "Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Binh An Truong Quang & Ruby Peters & Davide A. D. Cassani & Priyamvada Chugh & Andrew G. Clark & Meghan Agnew & Guillaume Charras & Ewa K. Paluch, 2021. "Extent of myosin penetration within the actin cortex regulates cell surface mechanics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:467:y:2010:i:7315:d:10.1038_nature09376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.