IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26484-5.html
   My bibliography  Save this article

Diverse integrated ecosystem approach overcomes pandemic-related fisheries monitoring challenges

Author

Listed:
  • Jarrod A. Santora

    (National Oceanic and Atmospheric Administration
    University of California Santa Cruz)

  • Tanya L. Rogers

    (National Oceanic and Atmospheric Administration)

  • Megan A. Cimino

    (University of California Santa Cruz
    National Oceanic and Atmospheric Administration)

  • Keith M. Sakuma

    (National Oceanic and Atmospheric Administration)

  • Keith D. Hanson

    (National Oceanic and Atmospheric Administration)

  • E. J. Dick

    (National Oceanic and Atmospheric Administration)

  • Jaime Jahncke

    (Point Blue Conservation Science)

  • Pete Warzybok

    (Point Blue Conservation Science)

  • John C. Field

    (National Oceanic and Atmospheric Administration)

Abstract

The COVID-19 pandemic caused unprecedented cancellations of fisheries and ecosystem-assessment surveys, resulting in a recession of observations needed for management and conservation globally. This unavoidable reduction of survey data poses challenges for informing biodiversity and ecosystem functioning, developing future stock assessments of harvested species, and providing strategic advice for ecosystem-based management. We present a diversified framework involving integration of monitoring data with empirical models and simulations to inform ecosystem status within the California Current Large Marine Ecosystem. We augment trawl observations collected from a limited fisheries survey with survey effort reduction simulations, use of seabird diets as indicators of fish abundance, and krill species distribution modeling trained on past observations. This diversified approach allows for evaluation of ecosystem status during data-poor situations, especially during the COVID-19 era. The challenges to ecosystem monitoring imposed by the pandemic may be overcome by preparing for unexpected effort reduction, linking disparate ecosystem indicators, and applying new species modeling techniques.

Suggested Citation

  • Jarrod A. Santora & Tanya L. Rogers & Megan A. Cimino & Keith M. Sakuma & Keith D. Hanson & E. J. Dick & Jaime Jahncke & Pete Warzybok & John C. Field, 2021. "Diverse integrated ecosystem approach overcomes pandemic-related fisheries monitoring challenges," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26484-5
    DOI: 10.1038/s41467-021-26484-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26484-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26484-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jarrod A. Santora & Nathan J. Mantua & Isaac D. Schroeder & John C. Field & Elliott L. Hazen & Steven J. Bograd & William J. Sydeman & Brian K. Wells & John Calambokidis & Lauren Saez & Dan Lawson & K, 2020. "Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephanie Brodie & Mercedes Pozo Buil & Heather Welch & Steven J. Bograd & Elliott L. Hazen & Jarrod A. Santora & Rachel Seary & Isaac D. Schroeder & Michael G. Jacox, 2023. "Ecological forecasts for marine resource management during climate extremes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Dillon J. Amaya & Michael G. Jacox & Michael A. Alexander & James D. Scott & Clara Deser & Antonietta Capotondi & Adam S. Phillips, 2023. "Bottom marine heatwaves along the continental shelves of North America," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Rand, Zoe R. & Ward, Eric J. & Zamon, Jeanette E. & Good, Thomas P. & Harvey, Chris J., 2024. "Using Hidden Markov Models to develop ecosystem indicators from non-stationary time series," Ecological Modelling, Elsevier, vol. 495(C).
    4. Lavenia Ratnarajah & Rana Abu-Alhaija & Angus Atkinson & Sonia Batten & Nicholas J. Bax & Kim S. Bernard & Gabrielle Canonico & Astrid Cornils & Jason D. Everett & Maria Grigoratou & Nurul Huda Ahmad , 2023. "Monitoring and modelling marine zooplankton in a changing climate," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Reimer, Matthew N. & Rogers, Anthony & Sanchirico, James, 2024. "Adaptive Systems for Climate-Ready Fisheries Management," RFF Working Paper Series 24-06, Resources for the Future.
    6. Jardine, Sunny L. & Fisher, Mary C. & Moore, Stephanie K. & Samhouri, Jameal F., 2020. "Inequality in the Economic Impacts from Climate Shocks in Fisheries: The Case of Harmful Algal Blooms," Ecological Economics, Elsevier, vol. 176(C).
    7. Heather Welch & Matthew S. Savoca & Stephanie Brodie & Michael G. Jacox & Barbara A. Muhling & Thomas A. Clay & Megan A. Cimino & Scott R. Benson & Barbara A. Block & Melinda G. Conners & Daniel P. Co, 2023. "Impacts of marine heatwaves on top predator distributions are variable but predictable," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26484-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.