IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26474-7.html
   My bibliography  Save this article

Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions

Author

Listed:
  • Yating Zhong

    (China University of Geosciences)

  • Timothy Kusky

    (China University of Geosciences
    China University of Geosciences)

  • Lu Wang

    (China University of Geosciences)

  • Ali Polat

    (China University of Geosciences
    University of Windsor)

  • Xuanyu Liu

    (China University of Geosciences)

  • Yaying Peng

    (China University of Geosciences)

  • Zhikang Luan

    (China University of Geosciences)

  • Chuanhai Wang

    (China University of Geosciences)

  • Junpeng Wang

    (China University of Geosciences)

  • Hao Deng

    (China University of Geosciences)

Abstract

Whether modern-style plate tectonics operated on early Earth is debated due to a paucity of definitive records of large-scale plate convergence, subduction, and collision in the Archean geological record. Archean Alpine-style sub-horizontal fold/thrust nappes in the Precambrian basement of China contain a Mariana-type subduction-initiation sequence of mid-ocean ridge basalt blocks in a 1600-kilometer-long mélange belt, overthrusting picritic-boninitic and island-arc tholeiite bearing nappes, in turn emplaced over a passive margin capping an ancient Archean continental fragment. Picrite-boninite and tholeiite units are 2698 ± 30 million years old marking the age of subduction initiation, with nappes emplaced over the passive margin at 2520 million years ago. Here, we show the life cycle of the subduction zone and ocean spanned circa 178 million years; conservative plate velocities of 2 centimeters per year yield a lateral transport distance of subducted oceanic crust of 3560 kilometers, providing direct positive evidence for horizontal plate tectonics in the Archean.

Suggested Citation

  • Yating Zhong & Timothy Kusky & Lu Wang & Ali Polat & Xuanyu Liu & Yaying Peng & Zhikang Luan & Chuanhai Wang & Junpeng Wang & Hao Deng, 2021. "Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26474-7
    DOI: 10.1038/s41467-021-26474-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26474-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26474-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinlong Yao & Peter A. Cawood & Guochun Zhao & Yigui Han & Xiaoping Xia & Qian Liu & Peng Wang, 2021. "Mariana-type ophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Liu & Richard M. Palin & Ross N. Mitchell & Zhenghong Liu & Jian Zhang & Zhongshui Li & Changquan Cheng & Hongxiang Zhang, 2024. "Archaean multi-stage magmatic underplating drove formation of continental nuclei in the North China Craton," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Yaying Peng & Timothy Kusky & Lu Wang & Zhikang Luan & Chuanhai Wang & Xuanyu Liu & Yating Zhong & Noreen J. Evans, 2022. "Passive margins in accreting Archaean archipelagos signal continental stability promoting early atmospheric oxygen rise," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Bo Huang & Man Liu & Timothy M. Kusky & Tim E. Johnson & Simon A. Wilde & Dong Fu & Hao Deng & Qunye Qian, 2023. "Changes in orogenic style and surface environment recorded in Paleoproterozoic foreland successions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Huang & Tim E. Johnson & Simon A. Wilde & Ali Polat & Dong Fu & Timothy Kusky, 2022. "Coexisting divergent and convergent plate boundary assemblages indicate plate tectonics in the Neoarchean," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26474-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.