IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24422-z.html
   My bibliography  Save this article

Mariana-type ophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly

Author

Listed:
  • Jinlong Yao

    (Northwest University)

  • Peter A. Cawood

    (Monash University)

  • Guochun Zhao

    (Northwest University
    The University of Hong Kong)

  • Yigui Han

    (Northwest University)

  • Xiaoping Xia

    (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences)

  • Qian Liu

    (The University of Hong Kong)

  • Peng Wang

    (The University of Hong Kong)

Abstract

Initiation of Mariana-type oceanic subduction zones requires rheologically strong oceanic lithosphere, which developed through secular cooling of Earth’s mantle. Here, we report a 518 Ma Mariana-type subduction initiation ophiolite from northern Tibet, which, along with compilation of similar ophiolites through Earth history, argues for the establishment of the modern plate tectonic regime by the early Cambrian. The ophiolite was formed during the subduction initiation of the Proto-Tethys Ocean that coincided with slab roll-back along the southern and western Gondwana margins at ca. 530-520 Ma. This global tectonic re-organization and the establishment of modern plate tectonic regime was likely controlled by secular cooling of the Earth, and facilitated by enhanced lubrication of subduction zones by sediments derived from widespread surface erosion of the extensive mountain ranges formed during Gondwana assembly. This time also corresponds to extreme events recorded in climate and surface proxies that herald formation of the contemporary Earth.

Suggested Citation

  • Jinlong Yao & Peter A. Cawood & Guochun Zhao & Yigui Han & Xiaoping Xia & Qian Liu & Peng Wang, 2021. "Mariana-type ophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24422-z
    DOI: 10.1038/s41467-021-24422-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24422-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24422-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Huang & Tim E. Johnson & Simon A. Wilde & Ali Polat & Dong Fu & Timothy Kusky, 2022. "Coexisting divergent and convergent plate boundary assemblages indicate plate tectonics in the Neoarchean," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Yating Zhong & Timothy Kusky & Lu Wang & Ali Polat & Xuanyu Liu & Yaying Peng & Zhikang Luan & Chuanhai Wang & Junpeng Wang & Hao Deng, 2021. "Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24422-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.