IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35559-w.html
   My bibliography  Save this article

Passive margins in accreting Archaean archipelagos signal continental stability promoting early atmospheric oxygen rise

Author

Listed:
  • Yaying Peng

    (China University of Geosciences)

  • Timothy Kusky

    (China University of Geosciences
    China University of Geosciences)

  • Lu Wang

    (China University of Geosciences)

  • Zhikang Luan

    (China University of Geosciences)

  • Chuanhai Wang

    (China University of Geosciences)

  • Xuanyu Liu

    (China University of Geosciences)

  • Yating Zhong

    (China University of Geosciences)

  • Noreen J. Evans

    (John de Laeter Centre, Curtin University)

Abstract

Significant changes in tectonic style and climate occurred from the late Archaean to early Proterozoic when continental growth and emergence provided opportunities for photosynthetic life to proliferate by the initiation of the Great Oxidation Event (GOE). In this study, we report a Neoarchaean passive-margin-type sequence (2560–2500 million years ago) from the Precambrian basement of China that formed in an accretionary orogen. Tectonostratigraphic and detrital zircon analysis reveal that thermal subsidence on the backside of a recently amalgamated oceanic archipelago created a quiet, shallow water environment, marked by deposition of carbonates, shales, and shallow water sediments, likely hosts to early photosynthetic microbes. Distinct from the traditional understanding of passive margins generated by continental rifting, post-collisional subsidence of archipelago margins represents a novel stable niche, signalling initial continental maturity and foreshadowing great changes at the Archaean-Proterozoic boundary.

Suggested Citation

  • Yaying Peng & Timothy Kusky & Lu Wang & Zhikang Luan & Chuanhai Wang & Xuanyu Liu & Yating Zhong & Noreen J. Evans, 2022. "Passive margins in accreting Archaean archipelagos signal continental stability promoting early atmospheric oxygen rise," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35559-w
    DOI: 10.1038/s41467-022-35559-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35559-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35559-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yating Zhong & Timothy Kusky & Lu Wang & Ali Polat & Xuanyu Liu & Yaying Peng & Zhikang Luan & Chuanhai Wang & Junpeng Wang & Hao Deng, 2021. "Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Huang & Man Liu & Timothy M. Kusky & Tim E. Johnson & Simon A. Wilde & Dong Fu & Hao Deng & Qunye Qian, 2023. "Changes in orogenic style and surface environment recorded in Paleoproterozoic foreland successions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Huang & Man Liu & Timothy M. Kusky & Tim E. Johnson & Simon A. Wilde & Dong Fu & Hao Deng & Qunye Qian, 2023. "Changes in orogenic style and surface environment recorded in Paleoproterozoic foreland successions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35559-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.