IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26422-5.html
   My bibliography  Save this article

NRG1/ErbB signalling controls the dialogue between macrophages and neural crest-derived cells during zebrafish fin regeneration

Author

Listed:
  • Béryl Laplace-Builhé

    (IRMB, Univ Montpellier, INSERM)

  • Audrey Barthelaix

    (IRMB, Univ Montpellier, INSERM)

  • Said Assou

    (IRMB, Univ Montpellier, INSERM)

  • Candice Bohaud

    (IRMB, Univ Montpellier, INSERM)

  • Marine Pratlong

    (MGX, BCM, Univ Montpellier, CNRS, INSERM)

  • Dany Severac

    (MGX, BCM, Univ Montpellier, CNRS, INSERM)

  • Gautier Tejedor

    (IRMB, Univ Montpellier, INSERM)

  • Patricia Luz-Crawford

    (Universidad de los Andes
    IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy)

  • Mai Nguyen-Chi

    (LPHI, Univ Montpellier, CNRS)

  • Marc Mathieu

    (IRMB, Univ Montpellier, INSERM)

  • Christian Jorgensen

    (IRMB, Univ Montpellier, INSERM
    CHU Montpellier)

  • Farida Djouad

    (IRMB, Univ Montpellier, INSERM)

Abstract

Fish species, such as zebrafish (Danio rerio), can regenerate their appendages after amputation through the formation of a heterogeneous cellular structure named blastema. Here, by combining live imaging of triple transgenic zebrafish embryos and single-cell RNA sequencing we established a detailed cell atlas of the regenerating caudal fin in zebrafish larvae. We confirmed the presence of macrophage subsets that govern zebrafish fin regeneration, and identified a foxd3-positive cell population within the regenerating fin. Genetic depletion of these foxd3-positive neural crest-derived cells (NCdC) showed that they are involved in blastema formation and caudal fin regeneration. Finally, chemical inhibition and transcriptomic analysis demonstrated that these foxd3-positive cells regulate macrophage recruitment and polarization through the NRG1/ErbB pathway. Here, we show the diversity of the cells required for blastema formation, identify a discrete foxd3-positive NCdC population, and reveal the critical function of the NRG1/ErbB pathway in controlling the dialogue between macrophages and NCdC.

Suggested Citation

  • Béryl Laplace-Builhé & Audrey Barthelaix & Said Assou & Candice Bohaud & Marine Pratlong & Dany Severac & Gautier Tejedor & Patricia Luz-Crawford & Mai Nguyen-Chi & Marc Mathieu & Christian Jorgensen , 2021. "NRG1/ErbB signalling controls the dialogue between macrophages and neural crest-derived cells during zebrafish fin regeneration," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26422-5
    DOI: 10.1038/s41467-021-26422-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26422-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26422-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicholas D. Leigh & Garrett S. Dunlap & Kimberly Johnson & Rachelle Mariano & Rachel Oshiro & Alan Y. Wong & Donald M. Bryant & Bess M. Miller & Alex Ratner & Andy Chen & William W. Ye & Brian J. Haas, 2018. "Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    2. Martin Kragl & Dunja Knapp & Eugen Nacu & Shahryar Khattak & Malcolm Maden & Hans Henning Epperlein & Elly M. Tanaka, 2009. "Cells keep a memory of their tissue origin during axolotl limb regeneration," Nature, Nature, vol. 460(7251), pages 60-65, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jixing Zhong & Rita Aires & Georgios Tsissios & Evangelia Skoufa & Kerstin Brandt & Tatiana Sandoval-Guzmán & Can Aztekin, 2023. "Multi-species atlas resolves an axolotl limb development and regeneration paradox," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Daniel H Rapoport & Tim Becker & Amir Madany Mamlouk & Simone Schicktanz & Charli Kruse, 2011. "A Novel Validation Algorithm Allows for Automated Cell Tracking and the Extraction of Biologically Meaningful Parameters," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-16, November.
    3. Thomas P. Lozito & Ricardo Londono & Aaron X. Sun & Megan L. Hudnall, 2021. "Introducing dorsoventral patterning in adult regenerating lizard tails with gene-edited embryonic neural stem cells," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Aiko Kawasumi-Kita & Sang-Woo Lee & Daisuke Ohtsuka & Kaori Niimi & Yoshifumi Asakura & Keiichi Kitajima & Yuto Sakane & Koji Tamura & Haruki Ochi & Ken-ichi T. Suzuki & Yoshihiro Morishita, 2024. "hoxc12/c13 as key regulators for rebooting the developmental program in Xenopus limb regeneration," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Ariel C. Vonk & Xiaofan Zhao & Zheyu Pan & Megan L. Hudnall & Conrad G. Oakes & Gabriela A. Lopez & Sarah C. Hasel-Kolossa & Alexander W. C. Kuncz & Sasha B. Sengelmann & Darian J. Gamble & Thomas P. , 2023. "Single-cell analysis of lizard blastema fibroblasts reveals phagocyte-dependent activation of Hedgehog-responsive chondrogenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Fang Ye & Guodong Zhang & Weigao E. & Haide Chen & Chengxuan Yu & Lei Yang & Yuting Fu & Jiaqi Li & Sulei Fu & Zhongyi Sun & Lijiang Fei & Qile Guo & Jingjing Wang & Yanyu Xiao & Xinru Wang & Peijing , 2022. "Construction of the axolotl cell landscape using combinatorial hybridization sequencing at single-cell resolution," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Urban Lendahl & Lars Muhl & Christer Betsholtz, 2022. "Identification, discrimination and heterogeneity of fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26422-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.