IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26374-w.html
   My bibliography  Save this article

Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al

Author

Listed:
  • Yan Chong

    (University of California
    National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory)

  • Ruopeng Zhang

    (University of California
    National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory)

  • Mohammad S. Hooshmand

    (University of California)

  • Shiteng Zhao

    (University of California
    National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory
    Beihang University)

  • Daryl C. Chrzan

    (University of California
    Materials Sciences Division, Lawrence Berkeley National Laboratory)

  • Mark Asta

    (University of California
    Materials Sciences Division, Lawrence Berkeley National Laboratory)

  • J. W. Morris

    (University of California)

  • Andrew M. Minor

    (University of California
    National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory
    Materials Sciences Division, Lawrence Berkeley National Laboratory)

Abstract

Individually, increasing the concentration of either oxygen or aluminum has a deleterious effect on the ductility of titanium alloys. For example, extremely small amounts of interstitial oxygen can severely deteriorate the tensile ductility of titanium, particularly at cryogenic temperatures. Likewise, substitutional aluminum will decrease the ductility of titanium at low-oxygen concentrations. Here, we demonstrate that, counter-intuitively, significant additions of both Al and O substantially improves both strength and ductility, with a 6-fold increase in ductility for a Ti-6Al-0.3 O alloy as compared to a Ti-0.3 O alloy. The Al and O solutes act together to increase and sustain a high strain-hardening rate by modifying the planar slip that predominates into a delocalized, three-dimensional dislocation pattern. The mechanism can be attributed to decreasing stacking fault energy by Al, modification of the “shuffle” mechanism of oxygen-dislocation interaction by the repulsive Al-O interaction in Ti, and micro-segregation of Al and O by the same cause.

Suggested Citation

  • Yan Chong & Ruopeng Zhang & Mohammad S. Hooshmand & Shiteng Zhao & Daryl C. Chrzan & Mark Asta & J. W. Morris & Andrew M. Minor, 2021. "Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26374-w
    DOI: 10.1038/s41467-021-26374-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26374-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26374-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhifeng Lei & Xiongjun Liu & Yuan Wu & Hui Wang & Suihe Jiang & Shudao Wang & Xidong Hui & Yidong Wu & Baptiste Gault & Paraskevas Kontis & Dierk Raabe & Lin Gu & Qinghua Zhang & Houwen Chen & Hongtao, 2018. "Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes," Nature, Nature, vol. 563(7732), pages 546-550, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Chong & Reza Gholizadeh & Tomohito Tsuru & Ruopeng Zhang & Koji Inoue & Wenqiang Gao & Andy Godfrey & Masatoshi Mitsuhara & J. W. Morris & Andrew M. Minor & Nobuhiro Tsuji, 2023. "Grain refinement in titanium prevents low temperature oxygen embrittlement," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xizheng Wang & Yunhao Zhao & Gang Chen & Xinpeng Zhao & Chuan Liu & Soumya Sridar & Luis Fernando Ladinos Pizano & Shuke Li & Alexandra H. Brozena & Miao Guo & Hanlei Zhang & Yuankang Wang & Wei Xiong, 2022. "Ultrahigh-temperature melt printing of multi-principal element alloys," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Tong Li & Tianwei Liu & Shiteng Zhao & Yan Chen & Junhua Luan & Zengbao Jiao & Robert O. Ritchie & Lanhong Dai, 2023. "Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Bo Xiao & Junhua Luan & Shijun Zhao & Lijun Zhang & Shiyao Chen & Yilu Zhao & Lianyong Xu & C. T. Liu & Ji-Jung Kai & Tao Yang, 2022. "Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice diffusion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. O. El Atwani & H. T. Vo & M. A. Tunes & C. Lee & A. Alvarado & N. Krienke & J. D. Poplawsky & A. A. Kohnert & J. Gigax & W.-Y. Chen & M. Li & Y. Q. Wang & J. S. Wróbel & D. Nguyen-Manh & J. K. S. Bald, 2023. "A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    7. Ge Wu & Chang Liu & Yong-Qiang Yan & Sida Liu & Xinyu Ma & Shengying Yue & Zhi-Wei Shan, 2024. "Elemental partitioning-mediated crystalline-to-amorphous phase transformation under quasi-static deformation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Jing Wang & Ping Jiang & Fuping Yuan & Xiaolei Wu, 2022. "Chemical medium-range order in a medium-entropy alloy," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    9. Chang Liu & Wenjun Lu & Wenzhen Xia & Chaowei Du & Ziyuan Rao & James P. Best & Steffen Brinckmann & Jian Lu & Baptiste Gault & Gerhard Dehm & Ge Wu & Zhiming Li & Dierk Raabe, 2022. "Massive interstitial solid solution alloys achieve near-theoretical strength," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26374-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.