IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22999-z.html
   My bibliography  Save this article

Tuning network topology and vibrational mode localization to achieve ultralow thermal conductivity in amorphous chalcogenides

Author

Listed:
  • Kiumars Aryana

    (University of Virginia)

  • Derek A. Stewart

    (Western Digital Corporation)

  • John T. Gaskins

    (University of Virginia)

  • Joyeeta Nag

    (Western Digital Corporation)

  • John C. Read

    (Western Digital Corporation)

  • David H. Olson

    (University of Virginia)

  • Michael K. Grobis

    (Western Digital Corporation)

  • Patrick E. Hopkins

    (University of Virginia
    University of Virginia
    University of Virginia)

Abstract

Amorphous chalcogenide alloys are key materials for data storage and energy scavenging applications due to their large non-linearities in optical and electrical properties as well as low vibrational thermal conductivities. Here, we report on a mechanism to suppress the thermal transport in a representative amorphous chalcogenide system, silicon telluride (SiTe), by nearly an order of magnitude via systematically tailoring the cross-linking network among the atoms. As such, we experimentally demonstrate that in fully dense amorphous SiTe the thermal conductivity can be reduced to as low as 0.10 ± 0.01 W m−1 K−1 for high tellurium content with a density nearly twice that of amorphous silicon. Using ab-initio simulations integrated with lattice dynamics, we attribute the ultralow thermal conductivity of SiTe to the suppressed contribution of extended modes of vibration, namely propagons and diffusons. This leads to a large shift in the mobility edge - a factor of five - towards lower frequency and localization of nearly 42% of the modes. This localization is the result of reductions in coordination number and a transition from over-constrained to under-constrained atomic network.

Suggested Citation

  • Kiumars Aryana & Derek A. Stewart & John T. Gaskins & Joyeeta Nag & John C. Read & David H. Olson & Michael K. Grobis & Patrick E. Hopkins, 2021. "Tuning network topology and vibrational mode localization to achieve ultralow thermal conductivity in amorphous chalcogenides," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22999-z
    DOI: 10.1038/s41467-021-22999-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22999-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22999-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengyang Yuan & Hongxiang Zong & Hongsheng Dong & Lei Yang & Yufei Gao & Zhen Fan & Lunxiang Zhang & Jiafei Zhao & Yongchen Song & John S. Tse, 2024. "Pressure-regulated rotational guests in nano-confined spaces suppress heat transport in methane hydrates," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Kiumars Aryana & Yifei Zhang & John A. Tomko & Md Shafkat Bin Hoque & Eric R. Hoglund & David H. Olson & Joyeeta Nag & John C. Read & Carlos Ríos & Juejun Hu & Patrick E. Hopkins, 2021. "Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Kiumars Aryana & John A. Tomko & Ran Gao & Eric R. Hoglund & Takanori Mimura & Sara Makarem & Alejandro Salanova & Md Shafkat Bin Hoque & Thomas W. Pfeifer & David H. Olson & Jeffrey L. Braun & Joyeet, 2022. "Observation of solid-state bidirectional thermal conductivity switching in antiferroelectric lead zirconate (PbZrO3)," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22999-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.