IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22795-9.html
   My bibliography  Save this article

A call for caution in analysing mammalian co-transfection experiments and implications of resource competition in data misinterpretation

Author

Listed:
  • Roberto Di Blasi

    (Imperial College London, South Kensington Campus
    Imperial College Centre for Synthetic Biology, South Kensington Campus)

  • Masue M. Marbiah

    (Imperial College London, South Kensington Campus
    Imperial College Centre for Synthetic Biology, South Kensington Campus)

  • Velia Siciliano

    (Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci)

  • Karen Polizzi

    (Imperial College London, South Kensington Campus
    Imperial College Centre for Synthetic Biology, South Kensington Campus)

  • Francesca Ceroni

    (Imperial College London, South Kensington Campus
    Imperial College Centre for Synthetic Biology, South Kensington Campus)

Abstract

Transient transfections are routinely used in basic and synthetic biology studies to unravel pathway regulation and to probe and characterise circuit designs. As each experiment has a component of intrinsic variability, reporter gene expression is usually normalized with co-delivered genes that act as transfection controls. Recent reports in mammalian cells highlight how resource competition for gene expression leads to biases in data interpretation, with a direct impact on co-transfection experiments. Here we define the connection between resource competition and transient transfection experiments and discuss possible alternatives. Our aim is to raise awareness within the community and stimulate discussion to include such considerations in future experimental designs, for the development of better transfection controls.

Suggested Citation

  • Roberto Di Blasi & Masue M. Marbiah & Velia Siciliano & Karen Polizzi & Francesca Ceroni, 2021. "A call for caution in analysing mammalian co-transfection experiments and implications of resource competition in data misinterpretation," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22795-9
    DOI: 10.1038/s41467-021-22795-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22795-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22795-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna-Maria Makri Pistikou & Glenn A. O. Cremers & Bryan L. Nathalia & Theodorus J. Meuleman & Bas W. A. Bögels & Bruno V. Eijkens & Anne Dreu & Maarten T. H. Bezembinder & Oscar M. J. A. Stassen & Car, 2023. "Engineering a scalable and orthogonal platform for synthetic communication in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Chenrui Qin & Yanhui Xiang & Jie Liu & Ruilin Zhang & Ziming Liu & Tingting Li & Zhi Sun & Xiaoyi Ouyang & Yeqing Zong & Haoqian M. Zhang & Qi Ouyang & Long Qian & Chunbo Lou, 2023. "Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Roberto Di Blasi & Mara Pisani & Fabiana Tedeschi & Masue M. Marbiah & Karen Polizzi & Simone Furini & Velia Siciliano & Francesca Ceroni, 2023. "Resource-aware construct design in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22795-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.