IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-20991-1.html
   My bibliography  Save this article

Assessing the influence of climate on wintertime SARS-CoV-2 outbreaks

Author

Listed:
  • Rachel E. Baker

    (Princeton University
    Princeton University)

  • Wenchang Yang

    (Princeton University)

  • Gabriel A. Vecchi

    (Princeton University
    Princeton University)

  • C. Jessica E. Metcalf

    (Princeton University
    Princeton University)

  • Bryan T. Grenfell

    (Princeton University
    Princeton University
    National Institutes of Health)

Abstract

High susceptibility has limited the role of climate in the SARS-CoV-2 pandemic to date. However, understanding a possible future effect of climate, as susceptibility declines and the northern-hemisphere winter approaches, is an important open question. Here we use an epidemiological model, constrained by observations, to assess the sensitivity of future SARS-CoV-2 disease trajectories to local climate conditions. We find this sensitivity depends on both the susceptibility of the population and the efficacy of non-pharmaceutical interventions (NPIs) in reducing transmission. Assuming high susceptibility, more stringent NPIs may be required to minimize outbreak risk in the winter months. Our results suggest that the strength of NPIs remain the greatest determinant of future pre-vaccination outbreak size. While we find a small role for meteorological forecasts in projecting outbreak severity, reducing uncertainty in epidemiological parameters will likely have a more substantial impact on generating accurate predictions.

Suggested Citation

  • Rachel E. Baker & Wenchang Yang & Gabriel A. Vecchi & C. Jessica E. Metcalf & Bryan T. Grenfell, 2021. "Assessing the influence of climate on wintertime SARS-CoV-2 outbreaks," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-20991-1
    DOI: 10.1038/s41467-021-20991-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-20991-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-20991-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriela Lobinska & Ady Pauzner & Arne Traulsen & Yitzhak Pilpel & Martin A. Nowak, 2022. "Evolution of resistance to COVID-19 vaccination with dynamic social distancing," Nature Human Behaviour, Nature, vol. 6(2), pages 193-206, February.
    2. Cooper, Daniel & Garga, Vaishali & Luengo-Prado, María José & Tang, Jenny, 2023. "The mitigating effect of masks on the spread of Covid-19," Economics & Human Biology, Elsevier, vol. 48(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-20991-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.