IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20445-0.html
   My bibliography  Save this article

Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates

Author

Listed:
  • Yu-Jiung Lin

    (National Tsing Hua University)

  • Imran Khan

    (National Tsing Hua University)

  • Subhajit Saha

    (National Tsing Hua University)

  • Chih-Cheng Wu

    (National Tsing Hua University
    National Taiwan University Hospital
    National Taiwan University
    National Health Research Institute)

  • Snigdha Roy Barman

    (National Tsing Hua University)

  • Fu-Cheng Kao

    (National Tsing Hua University
    Chang Gung Memorial Hospital)

  • Zong-Hong Lin

    (National Tsing Hua University
    National Tsing Hua University
    National Tsing Hua University)

Abstract

The highly reactive nature of reactive oxygen species (ROS) is the basis for widespread use in environmental and health-related fields. Conventionally, there are only two kinds of catalysts used for ROS generation: photocatalysts and piezocatalysts. However, their usage has been limited due to various environmental and physical factors. To address this problem, herein, we report thermoelectric materials, such as Bi2Te3, Sb2Te3, and PbTe, as thermocatalysts which can produce hydrogen peroxide (H2O2) under a small surrounding temperature difference. Being the most prevalent environmental factors in daily life, temperature and related thermal effects have tremendous potential for practical applications. To increase the practicality in everyday life, bismuth telluride nanoplates (Bi2Te3 NPs), serving as an efficient thermocatalyst, are coated on a carbon fiber fabric (Bi2Te3@CFF) to develop a thermocatalytic filter with antibacterial function. Temperature difference induced H2O2 generation by thermocatalysts results in the oxidative damage of bacteria, which makes thermocatalysts highly promising for disinfection applications. Antibacterial activity as high as 95% is achieved only by the treatment of low-temperature difference cycles. The current work highlights the horizon-shifting impacts of thermoelectric materials for real-time purification and antibacterial applications.

Suggested Citation

  • Yu-Jiung Lin & Imran Khan & Subhajit Saha & Chih-Cheng Wu & Snigdha Roy Barman & Fu-Cheng Kao & Zong-Hong Lin, 2021. "Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20445-0
    DOI: 10.1038/s41467-020-20445-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20445-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20445-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Liu & Lihao Wang & Qianhui Ma & Xingtao Xu & Xin Gao & Haiguang Zhu & Ting Feng & Xinyue Dou & Miharu Eguchi & Yusuke Yamauchi & Xun Yuan, 2024. "Simultaneous generation of residue-free reactive oxygen species and bacteria capture for efficient electrochemical water disinfection," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jaeho Yoon & Hanhwi Jang & Min-Wook Oh & Thomas Hilberath & Frank Hollmann & Yeon Sik Jung & Chan Beum Park, 2022. "Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Yong Kang & Zhuo Mao & Ying Wang & Chao Pan & Meitong Ou & Hanjie Zhang & Weiwei Zeng & Xiaoyuan Ji, 2022. "Design of a two-dimensional interplanar heterojunction for catalytic cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    4. Xiaoyang Pan & Xuhui Yang & Maoqing Yu & Xiaoxiao Lu & Hao Kang & Min-Quan Yang & Qingrong Qian & Xiaojing Zhao & Shijing Liang & Zhenfeng Bian, 2023. "2D MXenes polar catalysts for multi-renewable energy harvesting applications," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Hong-chao Li & Qiang Wan & Congcong Du & Jiafei Zhao & Fumin Li & Ying Zhang & Yanping Zheng & Mingshu Chen & Kelvin H. L. Zhang & Jianyu Huang & Gang Fu & Sen Lin & Xiaoqing Huang & Haifeng Xiong, 2022. "Layered Pd oxide on PdSn nanowires for boosting direct H2O2 synthesis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Jihyun Baek & Qiu Jin & Nathan Scott Johnson & Yue Jiang & Rui Ning & Apurva Mehta & Samira Siahrostami & Xiaolin Zheng, 2022. "Discovery of LaAlO3 as an efficient catalyst for two-electron water electrolysis towards hydrogen peroxide," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Mengjiao Li & Hong-Wei Lu & Shu-Wei Wang & Rei-Ping Li & Jiann-Yeu Chen & Wen-Shuo Chuang & Feng-Shou Yang & Yen-Fu Lin & Chih-Yen Chen & Ying-Chih Lai, 2022. "Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20445-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.