IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19312-9.html
   My bibliography  Save this article

Reprogrammable meta-hologram for optical encryption

Author

Listed:
  • Geyang Qu

    (Harbin Institute of Technology)

  • Wenhong Yang

    (Harbin Institute of Technology)

  • Qinghai Song

    (Harbin Institute of Technology
    Shanxi University)

  • Yilin Liu

    (Harbin Institute of Technology)

  • Cheng-Wei Qiu

    (National University of Singapore)

  • Jiecai Han

    (Harbin Institute of Technology)

  • Din-Ping Tsai

    (The Hong Kong Polytechnic University)

  • Shumin Xiao

    (Harbin Institute of Technology
    Shanxi University
    Harbin Institute of Technology)

Abstract

Meta-holographic encryption is a potentially important technique for information security. Despite rapid progresses in multi-tasked meta-holograms, the number of information channels available in metasurfaces is limited, making meta-holographic encryption vulnerable to some attacking algorithms. Herein, we demonstrate a re-programmable metasurface that can produce arbitrary holographic images for optical encryption. The encrypted information is divided into two matrices. These two matrices are imposed to the incident light and the metasurface, respectively. While the all-dielectric metasurface is static, the phase matrix of incident light provides additional degrees of freedom to precisely control the eventual functions at will. With a single Si metasurface, arbitrary holographic images and videos have been transported and decrypted. We hope that this work paves a more promising way to optical information encryption and authentication.

Suggested Citation

  • Geyang Qu & Wenhong Yang & Qinghai Song & Yilin Liu & Cheng-Wei Qiu & Jiecai Han & Din-Ping Tsai & Shumin Xiao, 2020. "Reprogrammable meta-hologram for optical encryption," Nature Communications, Nature, vol. 11(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19312-9
    DOI: 10.1038/s41467-020-19312-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19312-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19312-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinan Zhang & Shengting Zhu & Jinming Hu & Min Gu, 2024. "Femtosecond laser direct nanolithography of perovskite hydration for temporally programmable holograms," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Fei Zhang & Yinghui Guo & Mingbo Pu & Lianwei Chen & Mingfeng Xu & Minghao Liao & Lanting Li & Xiong Li & Xiaoliang Ma & Xiangang Luo, 2023. "Meta-optics empowered vector visual cryptography for high security and rapid decryption," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Xuyue Guo & Peng Li & Jinzhan Zhong & Dandan Wen & Bingyan Wei & Sheng Liu & Shuxia Qi & Jianlin Zhao, 2022. "Stokes meta-hologram toward optical cryptography," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Jie Wang & Jin Chen & Feilong Yu & Rongsheng Chen & Jiuxu Wang & Zengyue Zhao & Xuenan Li & Huaizhong Xing & Guanhai Li & Xiaoshuang Chen & Wei Lu, 2024. "Unlocking ultra-high holographic information capacity through nonorthogonal polarization multiplexing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Zhipeng Yu & Huanhao Li & Wannian Zhao & Po-Sheng Huang & Yu-Tsung Lin & Jing Yao & Wenzhao Li & Qi Zhao & Pin Chieh Wu & Bo Li & Patrice Genevet & Qinghua Song & Puxiang Lai, 2024. "High-security learning-based optical encryption assisted by disordered metasurface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19312-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.